論文の概要: Machine Learning-Powered Combinatorial Clock Auction
- arxiv url: http://arxiv.org/abs/2308.10226v2
- Date: Thu, 28 Mar 2024 15:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 21:53:04.701071
- Title: Machine Learning-Powered Combinatorial Clock Auction
- Title(参考訳): 機械学習を利用したコンビニアルクロックオークション
- Authors: Ermis Soumalias, Jakob Weissteiner, Jakob Heiss, Sven Seuken,
- Abstract要約: 我々はイテレーティブオークション(ICA)の設計について研究する。
本稿では,要求クエリに基づいてMLモデルをトレーニングする新しい手法を提案する。
いくつかのスペクトルオークション領域におけるMLベースの需要メカニズムを実験的に評価した。
- 参考スコア(独自算出の注目度): 13.724491757145385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the design of iterative combinatorial auctions (ICAs). The main challenge in this domain is that the bundle space grows exponentially in the number of items. To address this, several papers have recently proposed machine learning (ML)-based preference elicitation algorithms that aim to elicit only the most important information from bidders. However, from a practical point of view, the main shortcoming of this prior work is that those designs elicit bidders' preferences via value queries (i.e., ``What is your value for the bundle $\{A,B\}$?''). In most real-world ICA domains, value queries are considered impractical, since they impose an unrealistically high cognitive burden on bidders, which is why they are not used in practice. In this paper, we address this shortcoming by designing an ML-powered combinatorial clock auction that elicits information from the bidders only via demand queries (i.e., ``At prices $p$, what is your most preferred bundle of items?''). We make two key technical contributions: First, we present a novel method for training an ML model on demand queries. Second, based on those trained ML models, we introduce an efficient method for determining the demand query with the highest clearing potential, for which we also provide a theoretical foundation. We experimentally evaluate our ML-based demand query mechanism in several spectrum auction domains and compare it against the most established real-world ICA: the combinatorial clock auction (CCA). Our mechanism significantly outperforms the CCA in terms of efficiency in all domains, it achieves higher efficiency in a significantly reduced number of rounds, and, using linear prices, it exhibits vastly higher clearing potential. Thus, with this paper we bridge the gap between research and practice and propose the first practical ML-powered ICA.
- Abstract(参考訳): 本稿では,イテレーティブ・コンビナトリ・オークション (ICA) の設計について検討する。
この領域の主な課題は、バンドル空間がアイテム数で指数関数的に増加することである。
これを解決するために、いくつかの論文が最近、入札者から最も重要な情報のみを引き出すことを目的とした機械学習(ML)ベースの選好推論アルゴリズムを提案している。
しかし、実際的な見地からすると、この前の作業の主な欠点は、これらの設計が値クエリ(つまり、バンドル $\{A,B\}$?'' に対して ``What is your value for the bundle $\{A,B\}$?'' )を介して入札者の好みを引き出すことである。
ほとんどの現実世界のICAドメインでは、価値クエリは非現実的なものであり、入札者に非現実的に高い認知的負担を課しているため、実際は使われていない。
本稿では,ML を利用したコンビナタリアルクロックオークションを設計し,需要クエリのみを通じて入札者から情報を取得することで,この欠点に対処する(‘At price $p$, your most preferred bundle of items?’)。
まず、要求クエリに基づいてMLモデルをトレーニングするための新しい手法を提案する。
第2に、これらの訓練されたMLモデルに基づいて、要求クエリを最も高いクリア化ポテンシャルで決定する効率的な方法を導入し、理論的基盤も提供する。
いくつかのスペクトルオークションドメインでMLベースの要求クエリメカニズムを実験的に評価し、最も確立された実世界のICAである組合せクロックオークション(CCA)と比較した。
本機構は全領域においてCCAの効率を著しく上回り, ラウンド数を大幅に削減し, 線形価格を用いれば, 極めて高いクリア化ポテンシャルを示す。
そこで本稿では,研究と実践のギャップを埋めるとともに,MLを活用した最初の実用的なICAを提案する。
関連論文リスト
- Prices, Bids, Values: Everything, Everywhere, All at Once [13.724491757145385]
我々はイテレーティブオークション(ICA)の設計について研究する。
両問合せ型からの全情報を統合する新しい機械学習アルゴリズムを提案する。
これまでに設計された最も効率的なICAであるMLHCAを紹介します。
論文 参考訳(メタデータ) (2024-11-14T10:56:00Z) - Reinforcement Learning from Human Feedback with Active Queries [67.27150911254155]
現在の強化学習アプローチは、多くの場合、大量の人間による嗜好データを必要とする。
本稿では,能動学習の成功に触発されたクエリ効率の高いRLHF手法を提案する。
実験の結果,ADPOは人間の好みに対するクエリの約半分しか作成していないが,最先端のDPO法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2024-02-14T18:58:40Z) - Refined Mechanism Design for Approximately Structured Priors via Active
Regression [50.71772232237571]
我々は、大量の商品を戦略的入札者に販売する収益を最大化する販売業者の問題を考える。
この設定の最適かつほぼ最適のメカニズムは、特徴付けや計算が難しいことで有名である。
論文 参考訳(メタデータ) (2023-10-11T20:34:17Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
制約付きオンライン学習問題に対する既存の原始双対アルゴリズムは、2つの基本的な仮定に依存している。
このような仮定は、標準の原始双対テンプレートを弱適応的後悔最小化器で与えることによって、どのように回避できるのかを示す。
上記の2つの前提が満たされていない場合に保証される、世界の最高の保証を証明します。
論文 参考訳(メタデータ) (2023-02-02T16:30:33Z) - Bayesian Optimization-based Combinatorial Assignment [10.73407470973258]
オークションやコースアロケーションを含むアサインドメインについて検討する。
この領域の主な課題は、バンドル空間がアイテム数で指数関数的に増加することである。
論文 参考訳(メタデータ) (2022-08-31T08:47:02Z) - Should All Proposals be Treated Equally in Object Detection? [110.27485090952385]
オブジェクト検出器の複雑さと精度のトレードオフは、リソース制約されたビジョンタスクにとって重要な問題である。
検出効率の改善には、提案の不平等な処理に向けて、パラダイムシフトが必要であると仮定されている。
これにより、利用可能な計算予算がより有効になり、同じFLOPSの精度が向上する。
論文 参考訳(メタデータ) (2022-07-07T18:26:32Z) - Fast Rate Learning in Stochastic First Price Bidding [0.0]
ファーストプライスのオークションは、プログラム広告におけるビックレーのオークションに基づく伝統的な入札アプローチを大きく置き換えている。
対戦相手の最大入札分布が分かっている場合, 後悔度を著しく低くする方法を示す。
我々のアルゴリズムは、様々な入札分布の文献で提案されている選択肢よりもはるかに高速に収束する。
論文 参考訳(メタデータ) (2021-07-05T07:48:52Z) - Online Learning of Competitive Equilibria in Exchange Economies [94.24357018178867]
経済学では、複数の有理エージェント間の資源不足の共有は古典的な問題である。
エージェントの好みを学習するためのオンライン学習機構を提案する。
数値シミュレーションにより,本機構の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-11T21:32:17Z) - A Game-Theoretic Analysis of the Empirical Revenue Maximization
Algorithm with Endogenous Sampling [19.453243313852557]
実証収益最大化(ERM)はオークションデザインにおいて最も重要な価格学習アルゴリズムの1つである。
我々は、Laviらによって提案されたインセンティブ認識尺度の定義を一般化し、$N$の入力サンプルから$mge 1$の変化によるERMの出力価格の低減を定量化する。
本研究では, 単価オークションにおいて, 単価オークションにおけるグループインセンティブ・コンパチビリティを近似的に示すために, ERM を用いた効率よく, ほぼインセンティブに適合し, 収益に最適な学習アルゴリズムを構築した。
論文 参考訳(メタデータ) (2020-10-12T08:20:35Z) - Auction learning as a two-player game [19.706363403596196]
オークションデザイン(Auction Design)は、固定ユーティリティ機能を備えた2人プレイのゲームである。
期待収益を最大化するインセンティブをデザインすることは、オークションデザインの中心的な問題である。
論文 参考訳(メタデータ) (2020-06-10T06:45:20Z) - Generalization Guarantees for Multi-item Profit Maximization: Pricing,
Auctions, and Randomized Mechanisms [86.81403511861788]
購入者の価値に根ざした分布が存在する場合のマルチイテム利益について検討する。
購入者の値の任意のセットに対して、利益はメカニズムのパラメーターにおいて断片的に線形である。
我々は、まだサンプルベースのメカニズム設計文献にはないメカニズムクラスに対する新しい境界を証明した。
論文 参考訳(メタデータ) (2017-04-29T22:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。