Imagined Speech and Visual Imagery as Intuitive Paradigms for Brain-Computer Interfaces
- URL: http://arxiv.org/abs/2411.09400v1
- Date: Thu, 14 Nov 2024 12:19:28 GMT
- Title: Imagined Speech and Visual Imagery as Intuitive Paradigms for Brain-Computer Interfaces
- Authors: Seo-Hyun Lee, Ji-Ha Park, Deok-Seon Kim,
- Abstract summary: This study investigates the classification performance and brain connectivity patterns associated with imagined speech and visual imagery.
Results suggest the potential of imagined speech and visual imagery as an intuitive and scalable paradigm for BCI communication.
- Score: 1.33134751838052
- License:
- Abstract: Recent advancements in brain-computer interface (BCI) technology have emphasized the promise of imagined speech and visual imagery as effective paradigms for intuitive communication. This study investigates the classification performance and brain connectivity patterns associated with these paradigms, focusing on decoding accuracy across selected word classes. Sixteen participants engaged in tasks involving thirteen imagined speech and visual imagery classes, revealing above-chance classification accuracy for both paradigms. Variability in classification accuracy across individual classes highlights the influence of sensory and motor associations in imagined speech and vivid visual associations in visual imagery. Connectivity analysis further demonstrated increased functional connectivity in language-related and sensory regions for imagined speech, whereas visual imagery activated spatial and visual processing networks. These findings suggest the potential of imagined speech and visual imagery as an intuitive and scalable paradigm for BCI communication when selecting optimal word classes. Further exploration of the decoding outcomes for these two paradigms could provide insights for practical BCI communication.
Related papers
- Towards Unified Neural Decoding of Perceived, Spoken and Imagined Speech from EEG Signals [1.33134751838052]
This research investigated the effectiveness of deep learning models for non-invasive neural signal decoding.
It focused on distinguishing between different speech paradigms, including perceived, overt, whispered, and imagined speech.
arXiv Detail & Related papers (2024-11-14T07:20:08Z) - Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models [10.615012396285337]
We develop algorithms to enhance our understanding of visual processes by incorporating whole-brain activation maps.
We first compare our method with state-of-the-art approaches to decoding visual processing and show improved predictive semantic accuracy by 43%.
arXiv Detail & Related papers (2024-11-11T16:51:17Z) - Using Multimodal Deep Neural Networks to Disentangle Language from Visual Aesthetics [8.749640179057469]
We use linear decoding over the learned representations of unimodal vision, unimodal language, and multimodal deep neural network (DNN) models to predict human beauty ratings of naturalistic images.
We show that unimodal vision models (e.g. SimCLR) account for the vast majority of explainable variance in these ratings. Language-aligned vision models (e.g. SLIP) yield small gains relative to unimodal vision.
Taken together, these results suggest that whatever words we may eventually find to describe our experience of beauty, the ineffable computations of feedforward perception may provide sufficient foundation for that experience.
arXiv Detail & Related papers (2024-10-31T03:37:21Z) - Towards Decoding Brain Activity During Passive Listening of Speech [0.0]
We attempt to decode heard speech from intracranial electroencephalographic (iEEG) data using deep learning methods.
This approach diverges from the conventional focus on speech production and instead chooses to investigate neural representations of perceived speech.
Despite the approach not having achieved a breakthrough yet, the research sheds light on the potential of decoding neural activity during speech perception.
arXiv Detail & Related papers (2024-02-26T20:04:01Z) - MindGPT: Interpreting What You See with Non-invasive Brain Recordings [24.63828455553959]
We introduce a non-invasive neural decoder, termed as MindGPT, which interprets perceived visual stimuli into natural languages from fMRI signals.
Our experiments show that the generated word sequences truthfully represented the visual information conveyed in the seen stimuli.
arXiv Detail & Related papers (2023-09-27T15:35:20Z) - Vision-Language Pre-Training for Boosting Scene Text Detectors [57.08046351495244]
We specifically adapt vision-language joint learning for scene text detection.
We propose to learn contextualized, joint representations through vision-language pre-training.
The pre-trained model is able to produce more informative representations with richer semantics.
arXiv Detail & Related papers (2022-04-29T03:53:54Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
We propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images.
To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features.
We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism.
arXiv Detail & Related papers (2021-10-24T02:41:41Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
We compare and identify cognitive aspects on deep neural-based visual lip-reading models.
We observe a strong correlation between these theories in cognitive psychology and our unique modeling.
arXiv Detail & Related papers (2021-10-13T05:30:50Z) - From Two to One: A New Scene Text Recognizer with Visual Language
Modeling Network [70.47504933083218]
We propose a Visual Language Modeling Network (VisionLAN), which views the visual and linguistic information as a union.
VisionLAN significantly improves the speed by 39% and adaptively considers the linguistic information to enhance the visual features for accurate recognition.
arXiv Detail & Related papers (2021-08-22T07:56:24Z) - "Notic My Speech" -- Blending Speech Patterns With Multimedia [65.91370924641862]
We propose a view-temporal attention mechanism to model both the view dependence and the visemic importance in speech recognition and understanding.
Our proposed method outperformed the existing work by 4.99% in terms of the viseme error rate.
We show that there is a strong correlation between our model's understanding of multi-view speech and the human perception.
arXiv Detail & Related papers (2020-06-12T06:51:55Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech.
We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment.
We achieve state of the art results for emotion recognition and competitive results for speech recognition.
arXiv Detail & Related papers (2020-01-13T14:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.