What makes a good BIM design: quantitative linking between design behavior and quality
- URL: http://arxiv.org/abs/2411.09481v1
- Date: Thu, 14 Nov 2024 14:37:15 GMT
- Title: What makes a good BIM design: quantitative linking between design behavior and quality
- Authors: Xiang-Rui Ni, Peng Pan, Jia-Rui Lin,
- Abstract summary: This study proposes a novel approach, which, for the first time, identifies and quantitatively describes the relationship between design behaviors and quality of design.
Real-time collection and log mining are integrated to collect raw data of design behaviors.
Results confirm an existing quantifiable relationship which can be learned by various models.
- Score: 0.6088110776359856
- License:
- Abstract: In the Architecture Engineering & Construction (AEC) industry, how design behaviors impact design quality remains unclear. This study proposes a novel approach, which, for the first time, identifies and quantitatively describes the relationship between design behaviors and quality of design based on Building Information Modeling (BIM). Real-time collection and log mining are integrated to collect raw data of design behaviors. Feature engineering and various machine learning models are then utilized for quantitative modeling and interpretation. Results confirm an existing quantifiable relationship which can be learned by various models. The best-performing model using Extremely Random Trees achieved an R2 value of 0.88 on the test set. Behavioral features related to designer's skill level and changes of design intentions are identified to have significant impacts on design quality. These findings deepen our understanding of the design process and help forming BIM designs with better quality.
Related papers
- Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models [9.900586490845694]
This study introduces a generative imputation model leveraging graph attention networks and tabular diffusion models for completing missing parametric data in engineering designs.
We demonstrate our model significantly outperforms existing classical methods, such as MissForest, hotDeck, PPCA, and TabCSDI in both the accuracy and diversity of imputation options.
The graph model helps accurately capture and impute complex parametric interdependencies from an assembly graph, which is key for design problems.
arXiv Detail & Related papers (2024-06-17T16:03:17Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Representation Learning for Sequential Volumetric Design Tasks [11.702880690338677]
We propose to encode the design knowledge from a collection of expert or high-performing design sequences.
We develop the preference model by estimating the density of the learned representations.
We train an autoregressive transformer model for sequential design generation.
arXiv Detail & Related papers (2023-09-05T21:21:06Z) - Machine Learning-Based Multi-Objective Design Exploration Of Flexible
Disc Elements [1.5638419778920147]
This paper showcases Artificial Neural Network (ANN) architecture applied to an engineering design problem to explore and identify improved design solutions.
The case problem of this study is the design of flexible disc elements used in disc couplings.
To accomplish this objective, we employ ANN coupled with genetic algorithm in the design exploration step to identify designs that meet the specified criteria.
arXiv Detail & Related papers (2023-04-14T16:48:51Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Efficient Automatic Machine Learning via Design Graphs [72.85976749396745]
We propose FALCON, an efficient sample-based method to search for the optimal model design.
FALCON features 1) a task-agnostic module, which performs message passing on the design graph via a Graph Neural Network (GNN), and 2) a task-specific module, which conducts label propagation of the known model performance information.
We empirically show that FALCON can efficiently obtain the well-performing designs for each task using only 30 explored nodes.
arXiv Detail & Related papers (2022-10-21T21:25:59Z) - Material Prediction for Design Automation Using Graph Representation
Learning [5.181429907321226]
We introduce a graph representation learning framework that supports the material prediction of bodies in assemblies.
We formulate the material selection task as a node-level prediction task over the assembly graph representation of CAD models and tackle it using Graph Neural Networks (GNNs)
The proposed framework can scale to large datasets and incorporate designers' knowledge into the learning process.
arXiv Detail & Related papers (2022-09-26T15:49:35Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives.
Model-based computational design algorithms assist designers by generating design examples during design.
Black box methods for assistance, on the other hand, can work with any design problem.
arXiv Detail & Related papers (2022-04-15T20:40:43Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.