論文の概要: Marker-free Human Gait Analysis using a Smart Edge Sensor System
- arxiv url: http://arxiv.org/abs/2411.09538v1
- Date: Thu, 14 Nov 2024 15:55:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:28.577884
- Title: Marker-free Human Gait Analysis using a Smart Edge Sensor System
- Title(参考訳): スマートエッジセンサシステムを用いたマーカフリー歩行解析
- Authors: Eva Katharina Bauer, Simon Bultmann, Sven Behnke,
- Abstract要約: スマートエッジセンサを用いたマルチカメラを用いた歩行解析のための新しいマーカーレス手法を提案する。
歩行パターンによって個人を特定するために,三重項損失計算を用いたシームズ埋め込みネットワークを提案する。
- 参考スコア(独自算出の注目度): 17.549403588440065
- License:
- Abstract: The human gait is a complex interplay between the neuronal and the muscular systems, reflecting an individual's neurological and physiological condition. This makes gait analysis a valuable tool for biomechanics and medical experts. Traditional observational gait analysis is cost-effective but lacks reliability and accuracy, while instrumented gait analysis, particularly using marker-based optical systems, provides accurate data but is expensive and time-consuming. In this paper, we introduce a novel markerless approach for gait analysis using a multi-camera setup with smart edge sensors to estimate 3D body poses without fiducial markers. We propose a Siamese embedding network with triplet loss calculation to identify individuals by their gait pattern. This network effectively maps gait sequences to an embedding space that enables clustering sequences from the same individual or activity closely together while separating those of different ones. Our results demonstrate the potential of the proposed system for efficient automated gait analysis in diverse real-world environments, facilitating a wide range of applications.
- Abstract(参考訳): ヒトの歩行は、神経系と筋肉系の複雑な相互作用であり、個人の神経学的および生理的状態を反映している。
これにより、歩行分析はバイオメカニクスや医療専門家にとって貴重なツールとなる。
従来の歩行分析は費用対効果があるが信頼性と正確性に欠けるが、計測された歩行分析(特にマーカーベースの光学系)は正確なデータを提供するが、高価で時間を要する。
本稿では,スマートエッジセンサを用いたマルチカメラによる歩行解析のための新しいマーカーレス手法を提案する。
歩行パターンによって個人を特定するために,三重項損失計算を用いたシームズ埋め込みネットワークを提案する。
このネットワークは、歩行シーケンスを埋め込み空間に効果的にマッピングし、同一個人または活動からのクラスタリングシーケンスを密に結合し、異なるものから分離することを可能にする。
本研究は,多種多様な実環境における効率的な自動歩行分析システムの可能性を示し,幅広い応用を容易にするものである。
関連論文リスト
- Feature Fusion Based on Mutual-Cross-Attention Mechanism for EEG Emotion Recognition [0.5985204759362747]
我々はMutual-Cross-Attention (MCA) と呼ばれる新規で効果的な機能融合機構を提案する。
MCAは脳波データにおける時間領域と周波数領域の特徴の相補的関係を発見する。
提案手法は最終的にDEAデータセット上で99.49%(原子価)と99.30%(原子価)の精度を達成する。
論文 参考訳(メタデータ) (2024-06-20T06:08:52Z) - Enhancing Apparent Personality Trait Analysis with Cross-Modal Embeddings [0.5461938536945723]
本稿では,ショートビデオ記録で訓練した人格特性予測のために,シームズ拡張を用いたマルチモーダルディープニューラルネットワークを提案する。
分析されたデータセットの高度に集中したターゲット分布のため、第3桁の変更は関連している。
論文 参考訳(メタデータ) (2024-05-06T20:51:28Z) - Log-Likelihood Score Level Fusion for Improved Cross-Sensor Smartphone
Periocular Recognition [52.15994166413364]
我々は、複数のコンパレータを融合させて、異なるスマートフォンの画像を比較する際に、眼周囲の性能を改善する。
我々は線形ロジスティック回帰に基づく確率的融合フレームワークを使用し、融合したスコアはログライクな比率になる傾向にある。
我々のフレームワークは、同じセンサとクロスセンサーのスコア分布が整列され、共通の確率領域にマッピングされるため、異なるデバイスからの信号を処理するためのエレガントでシンプルなソリューションも提供します。
論文 参考訳(メタデータ) (2023-11-02T13:43:44Z) - Multimodal Adaptive Fusion of Face and Gait Features using Keyless
attention based Deep Neural Networks for Human Identification [67.64124512185087]
歩行のような軟式生体認証は、人物認識や再識別といった監視作業において顔に広く使われている。
本稿では,キーレス注意深層ニューラルネットワークを活用することで,歩行と顔のバイオメトリック・キューを動的に組み込むための適応型マルチバイオメトリック・フュージョン戦略を提案する。
論文 参考訳(メタデータ) (2023-03-24T05:28:35Z) - Gait-based Human Identification through Minimum Gait-phases and Sensors [0.45857634932098795]
本稿では,異なる歩行位相の時間的および記述的統計パラメータを特徴とする歩行識別手法を提案する。
歩行サイクル全体の1つのフェーズを1つのセンサーで監視することで、95.5%以上の高い精度を達成することができる。
また,歩行周期全体を骨盤と足のセンサで監視すると,100%の識別精度が得られた。
論文 参考訳(メタデータ) (2021-10-15T02:09:45Z) - Deep Metric Learning with Locality Sensitive Angular Loss for
Self-Correcting Source Separation of Neural Spiking Signals [77.34726150561087]
本稿では, 深層学習に基づく手法を提案し, 自動掃除とロバスト分離フィルタの必要性に対処する。
本手法は, ソース分離した高密度表面筋電図記録に基づいて, 人工的に劣化したラベルセットを用いて検証する。
このアプローチにより、ニューラルネットワークは、信号のラベル付けの不完全な方法を使用して、神経生理学的時系列を正確に復号することができる。
論文 参考訳(メタデータ) (2021-10-13T21:51:56Z) - Cross-Modal Analysis of Human Detection for Robotics: An Industrial Case
Study [7.844709223688293]
ロボット工学で典型的に使用されるセンサとアルゴリズムの組み合わせの系統的相互モーダル分析を行う。
2Dレンジデータ,3Dライダーデータ,RGB-Dデータに対する最先端人検知器の性能の比較を行った。
我々は、強力な画像ベースRGB-D検出器を拡張し、弱い3次元境界ボックスラベルの形でライダー検出器の相互監視を行う。
論文 参考訳(メタデータ) (2021-08-03T13:33:37Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Modality Attention and Sampling Enables Deep Learning with Heterogeneous
Marker Combinations in Fluorescence Microscopy [5.334932400937323]
蛍光顕微鏡は、色チャネルとして可視化された様々な慎重に選択されたマーカーで染色することで、細胞、細胞ネットワーク、解剖学的ランドマークの詳細な検査を可能にする。
他の視覚応用におけるディープラーニング手法の成功にもかかわらず、蛍光画像解析の可能性はまだ明らかになっていない。
本稿では,モダリティサンプリング戦略と新しいアテンションモジュールを備えたニューラルネットワーク手法であるMarker Sampling and Exciteを提案する。
論文 参考訳(メタデータ) (2020-08-27T21:57:07Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。