Equation-informed data-driven identification of flow budgets and dynamics
- URL: http://arxiv.org/abs/2411.09545v1
- Date: Thu, 14 Nov 2024 15:59:41 GMT
- Title: Equation-informed data-driven identification of flow budgets and dynamics
- Authors: Nataliya Sevryugina, Serena Costanzo, Steve de Bruyn Kops, Colm-cille Caulfield, Iraj Mortazavi, Taraneh Sayadi,
- Abstract summary: We propose a novel hybrid approach to flow clustering.
It consists of characterising each sample point of the system with equation-based features.
The algorithm is implemented in both the Eulerian and Lagrangian frameworks.
- Score: 0.0
- License:
- Abstract: Computational Fluid Dynamics (CFD) is an indispensable method of fluid modelling in engineering applications, reducing the need for physical prototypes and testing for tasks such as design optimisation and performance analysis. Depending on the complexity of the system under consideration, models ranging from low to high fidelity can be used for prediction, allowing significant speed-up. However, the choice of model requires information about the actual dynamics of the flow regime. Correctly identifying the regions/clusters of flow that share the same dynamics has been a challenging research topic to date. In this study, we propose a novel hybrid approach to flow clustering. It consists of characterising each sample point of the system with equation-based features, i.e. features are budgets that represent the contribution of each term from the original governing equation to the local dynamics at each sample point. This was achieved by applying the Sparse Identification of Nonlinear Dynamical systems (SINDy) method pointwise to time evolution data. The method proceeds with equation-based clustering using the Girvan-Newman algorithm. This allows the detection of communities that share the same physical dynamics. The algorithm is implemented in both Eulerian and Lagrangian frameworks. In the Lagrangian, i.e. dynamic approach, the clustering is performed on the trajectory of each point, allowing the change of clusters to be represented also in time. The performance of the algorithm is first tested on a flow around a cylinder. The construction of the dynamic clusters in this test case clearly shows the evolution of the wake from the steady state solution through the transient to the oscillatory solution. Dynamic clustering was then successfully tested on turbulent flow data. Two distinct and well-defined clusters were identified and their temporal evolution was reconstructed.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Tensor Decompositions Meet Control Theory: Learning General Mixtures of
Linear Dynamical Systems [19.47235707806519]
We give a new approach to learning mixtures of linear dynamical systems based on tensor decompositions.
Our algorithm succeeds without strong separation conditions on the components, and can be used to compete with the Bayes optimal clustering of the trajectories.
arXiv Detail & Related papers (2023-07-13T03:00:01Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Dynamic Bayesian Learning and Calibration of Spatiotemporal Mechanistic
System [0.0]
We develop an approach for fully learning and calibration of mechanistic models based on noisy observations.
We demonstrate this flexibility through solving problems arising in the analysis of ordinary and partial nonlinear differential equations.
arXiv Detail & Related papers (2022-08-12T23:17:46Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Streaming Inference for Infinite Non-Stationary Clustering [9.84413545378636]
Learning from a continuous stream of non-stationary data in an unsupervised manner is arguably one of the most common and most challenging settings facing intelligent agents.
Here, we attack learning under all three conditions (unsupervised, streaming, non-stationary) in the context of clustering, also known as mixture modeling.
We introduce a novel clustering algorithm that endows mixture models with the ability to create new clusters online, as demanded by the data.
arXiv Detail & Related papers (2022-05-02T21:05:18Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Linearization and Identification of Multiple-Attractors Dynamical System
through Laplacian Eigenmaps [8.161497377142584]
We propose a Graph-based spectral clustering method that takes advantage of a velocity-augmented kernel to connect data-points belonging to the same dynamics.
We prove that there always exist a set of 2-dimensional embedding spaces in which the sub-dynamics are linear, and n-dimensional embedding where they are quasi-linear.
We learn a diffeomorphism from the Laplacian embedding space to the original space and show that the Laplacian embedding leads to good reconstruction accuracy and a faster training time.
arXiv Detail & Related papers (2022-02-18T12:43:25Z) - Reconstructing a dynamical system and forecasting time series by
self-consistent deep learning [4.947248396489835]
We introduce a self-consistent deep-learning framework for a noisy deterministic time series.
It provides unsupervised filtering, state-space reconstruction, identification of the underlying differential equations and forecasting.
arXiv Detail & Related papers (2021-08-04T06:10:58Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.