BabyLM Challenge: Exploring the Effect of Variation Sets on Language Model Training Efficiency
- URL: http://arxiv.org/abs/2411.09587v2
- Date: Wed, 19 Mar 2025 13:51:54 GMT
- Title: BabyLM Challenge: Exploring the Effect of Variation Sets on Language Model Training Efficiency
- Authors: Akari Haga, Akiyo Fukatsu, Miyu Oba, Arianna Bisazza, Yohei Oseki,
- Abstract summary: We focus on Variation Sets (VSs), sets of consecutive utterances expressing a similar intent with slightly different words and structures.<n>To assess the impact of VSs on training data efficiency, we augment CDS data with different proportions of artificial VSs and use these datasets to train an auto-regressive model, GPT-2.<n>We find that the best proportion of VSs depends on the evaluation benchmark: BLiMP and GLUE scores benefit from the presence of VSs, but EWOK scores do not.
- Score: 5.1205362176467055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While current large language models have achieved a remarkable success, their data efficiency remains a challenge to overcome. Recently it has been suggested that child-directed speech (CDS) can improve training data efficiency of modern language models based on Transformer neural networks. However, it is not yet understood which specific properties of CDS are effective for training these models. In the context of the BabyLM Challenge, we focus on Variation Sets (VSs), sets of consecutive utterances expressing a similar intent with slightly different words and structures, which are ubiquitous in CDS. To assess the impact of VSs on training data efficiency, we augment CDS data with different proportions of artificial VSs and use these datasets to train an auto-regressive model, GPT-2. We find that the best proportion of VSs depends on the evaluation benchmark: BLiMP and GLUE scores benefit from the presence of VSs, but EWOK scores do not. Additionally, the results vary depending on multiple factors such as the number of epochs and the order of utterance presentation. Taken together, these findings suggest that VSs can have a beneficial influence on language models, while leaving room for further investigation.
Related papers
- Relation-based Counterfactual Data Augmentation and Contrastive Learning for Robustifying Natural Language Inference Models [0.0]
We propose a method in which we use token-based and sentence-based augmentation methods to generate counterfactual sentence pairs.
We show that the proposed method can improve the performance and robustness of the NLI model.
arXiv Detail & Related papers (2024-10-28T03:43:25Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - What matters when building vision-language models? [52.8539131958858]
We develop Idefics2, an efficient foundational vision-language model with 8 billion parameters.
Idefics2 achieves state-of-the-art performance within its size category across various multimodal benchmarks.
We release the model (base, instructed, and chat) along with the datasets created for its training.
arXiv Detail & Related papers (2024-05-03T17:00:00Z) - Evaluating Large Language Models Using Contrast Sets: An Experimental Approach [0.0]
We introduce an innovative technique for generating a contrast set for the Stanford Natural Language Inference dataset.
Our strategy involves the automated substitution of verbs, adverbs, and adjectives with their synonyms to preserve the original meaning of sentences.
This method aims to assess whether a model's performance is based on genuine language comprehension or simply on pattern recognition.
arXiv Detail & Related papers (2024-04-02T02:03:28Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL)
In this work, we first revisit the factors contributing to this variance from both data and model aspects, and find that the choice of demonstration is both data- and model-dependent.
We propose a data- and model-dependent demonstration selection method, textbfTopK + ConE, based on the assumption that textitthe performance of a demonstration positively correlates with its contribution to the model's understanding of the test samples.
arXiv Detail & Related papers (2024-01-22T16:25:27Z) - Influence Scores at Scale for Efficient Language Data Sampling [3.072340427031969]
"influence scores" are used to identify important subsets of data.
In this paper, we explore the applicability of influence scores in language classification tasks.
arXiv Detail & Related papers (2023-11-27T20:19:22Z) - EMS: Efficient and Effective Massively Multilingual Sentence Embedding Learning [38.928786416891924]
We introduce efficient and effective massively multilingual sentence embedding (EMS) using cross-lingual token-level reconstruction (XTR) and sentence-level contrastive learning as training objectives.
Compared with related studies, the proposed model can be efficiently trained using significantly fewer parallel sentences and GPU computation resources.
We release the codes for model training and the EMS pre-trained sentence embedding model, which supports 62 languages.
arXiv Detail & Related papers (2022-05-31T12:29:25Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z) - Training Data Leakage Analysis in Language Models [6.843491191969066]
We introduce a methodology that investigates identifying the user content in the training data that could be leaked under a strong and realistic threat model.
We propose two metrics to quantify user-level data leakage by measuring a model's ability to produce unique sentence fragments within training data.
arXiv Detail & Related papers (2021-01-14T00:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.