論文の概要: The Moral Foundations Weibo Corpus
- arxiv url: http://arxiv.org/abs/2411.09612v1
- Date: Thu, 14 Nov 2024 17:32:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:25:12.454578
- Title: The Moral Foundations Weibo Corpus
- Title(参考訳): The Moral Foundations Weibo Corpus
- Authors: Renjie Cao, Miaoyan Hu, Jiahan Wei, Baha Ihnaini,
- Abstract要約: 道徳的な感情は、オンライン環境とオフライン環境の両方に影響し、行動スタイルと相互作用パターンを形成する。
既存のコーパスは価値はあるものの、しばしば言語的な制限に直面している。
このコーパスは、Weiboに関する25,671の中国語のコメントで構成され、6つの多様な話題領域を含んでいる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Moral sentiments expressed in natural language significantly influence both online and offline environments, shaping behavioral styles and interaction patterns, including social media selfpresentation, cyberbullying, adherence to social norms, and ethical decision-making. To effectively measure moral sentiments in natural language processing texts, it is crucial to utilize large, annotated datasets that provide nuanced understanding for accurate analysis and modeltraining. However, existing corpora, while valuable, often face linguistic limitations. To address this gap in the Chinese language domain,we introduce the Moral Foundation Weibo Corpus. This corpus consists of 25,671 Chinese comments on Weibo, encompassing six diverse topic areas. Each comment is manually annotated by at least three systematically trained annotators based on ten moral categories derived from a grounded theory of morality. To assess annotator reliability, we present the kappa testresults, a gold standard for measuring consistency. Additionally, we apply several the latest large language models to supplement the manual annotations, conducting analytical experiments to compare their performance and report baseline results for moral sentiment classification.
- Abstract(参考訳): 自然言語で表される道徳的な感情は、オンラインとオフラインの両方の環境、ソーシャルメディアの自己表現、サイバーいじめ、社会的規範への固執、倫理的意思決定などの行動様式や相互作用パターンに大きく影響した。
自然言語処理テキストにおける道徳的感情を効果的に測定するためには、正確な分析とモデルトレーニングのためのニュアンスな理解を提供する大規模な注釈付きデータセットを活用することが不可欠である。
しかし、既存のコーパスは価値はあるものの、しばしば言語的な制限に直面している。
中国語領域におけるこのギャップに対処するため,Moral Foundation Weibo Corpusを紹介した。
このコーパスは、Weiboに関する25,671の中国語のコメントで構成され、6つの多様な話題領域を含んでいる。
各コメントは、少なくとも3つの体系的に訓練されたアノテータによって手動で注釈付けされる。
アノテーションの信頼性を評価するために,一貫性を測定するための金の標準であるKappa testresultsを提案する。
さらに、手動のアノテーションを補うためにいくつかの最新の大規模言語モデルを適用し、分析実験を行い、その性能を比較し、道徳的感情分類の基準結果を報告する。
関連論文リスト
- Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Moral Machine 実験に基づいて,MultiTP と呼ばれる100以上の言語でモラルジレンマヴィグネットの言語間コーパスを開発する。
分析では、19の異なるLLMと人間の判断を一致させ、6つのモラル次元をまたいだ嗜好を捉えた。
我々は、AIシステムにおける一様道徳的推論の仮定に挑戦し、言語間のアライメントの顕著なばらつきを発見した。
論文 参考訳(メタデータ) (2024-07-02T14:02:53Z) - MoralBERT: A Fine-Tuned Language Model for Capturing Moral Values in Social Discussions [4.747987317906765]
道徳的価値は、情報を評価し、意思決定し、重要な社会問題に関する判断を形成する上で、基本的な役割を担います。
自然言語処理(NLP)の最近の進歩は、人文コンテンツにおいて道徳的価値を測ることができることを示している。
本稿では、社会談話における道徳的感情を捉えるために微調整された言語表現モデルであるMoralBERTを紹介する。
論文 参考訳(メタデータ) (2024-03-12T14:12:59Z) - Enhancing Stance Classification on Social Media Using Quantified Moral Foundations [7.061680079778037]
本研究では,道徳的基盤の次元が,特定の目標に対する個人の姿勢を予測するのにどのように貢献するかを検討する。
テキストから抽出した道徳的基礎的特徴とメッセージ意味的特徴を組み込んで,メッセージレベルとユーザレベルのスタンスを分類する。
予備的な結果は、モラル基礎の符号化が姿勢検出タスクの性能を高めることを示唆している。
論文 参考訳(メタデータ) (2023-10-15T14:40:57Z) - Knowledge of cultural moral norms in large language models [3.475552182166427]
各国の道徳規範に関する知識をモノリンガル英語モデルに含める程度について検討する。
我々は、世界価値調査とPEW世界道徳調査の2つの公開データセットを用いて分析を行った。
事前学習された英語モデルは、以前報告された英語の道徳規範よりも、各国の経験的道徳規範を悪化させる。
論文 参考訳(メタデータ) (2023-06-02T18:23:35Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
本稿では,暗黙的に伝達されたコンテンツを明示的に考慮したテキスト分析手法を提案する。
我々は大きな言語モデルを用いて、観察されたテキストと推論的に関係する命題の集合を生成する。
本研究は,NLPにおいて,文字のみではなく,観察された言語の背景にある意味をモデル化することが重要であることを示唆する。
論文 参考訳(メタデータ) (2023-05-23T23:45:20Z) - A Corpus for Understanding and Generating Moral Stories [84.62366141696901]
機械のこれらの能力を評価するために,2つの理解タスクと2つの世代タスクを提案する。
我々は、中国語と英語で書かれた道徳的物語の新しいデータセットであるSTORALを提示する。
論文 参考訳(メタデータ) (2022-04-20T13:12:36Z) - Learning to Adapt Domain Shifts of Moral Values via Instance Weighting [74.94940334628632]
ソーシャルメディアからユーザ生成テキストの道徳的価値を分類することは、コミュニティ文化を理解する上で重要である。
道徳的価値観と言語使用法は、社会運動全体で変化しうる。
本稿では、ドメイン間分類タスクを改善するために、インスタンス重み付けによるニューラルネットワーク適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-15T18:15:41Z) - Identifying Morality Frames in Political Tweets using Relational
Learning [27.047907641503762]
道徳的感情はその目標によって動機付けられ、個人または集団的実体に対応することができる。
異なる主体に向けられた道徳的態度を組織化するための表現枠組みである道徳的枠組みを導入する。
本研究では,関係学習モデルを提案し,実体や道徳的基礎に対する道徳的態度を共同で予測する。
論文 参考訳(メタデータ) (2021-09-09T19:48:57Z) - Ethical-Advice Taker: Do Language Models Understand Natural Language
Interventions? [62.74872383104381]
読解システムにおける自然言語介入の有効性について検討する。
本稿では,新たな言語理解タスクであるLingguistic Ethical Interventions (LEI)を提案する。
論文 参考訳(メタデータ) (2021-06-02T20:57:58Z) - Aligning AI With Shared Human Values [85.2824609130584]
私たちは、正義、幸福、義務、美徳、常識道徳の概念にまたがる新しいベンチマークであるETHICSデータセットを紹介します。
現在の言語モデルは、基本的な人間の倫理的判断を予測できる有望だが不完全な能力を持っている。
私たちの研究は、今日の機械倫理の進歩を示しており、人間の価値観に合わせたAIへの足掛かりを提供する。
論文 参考訳(メタデータ) (2020-08-05T17:59:16Z) - Text-based inference of moral sentiment change [11.188112005462536]
本研究では、縦型コーパスを用いて、一般大衆の道徳的感情変化を調査するためのテキストベースの枠組みを提案する。
ダイアクロニックな単語の埋め込みから学んだ道徳的バイアスを探索することで方法論を構築します。
我々の研究は、社会における道徳的感情の変化を特徴づけるために自然言語処理を適用する機会を提供する。
論文 参考訳(メタデータ) (2020-01-20T18:52:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。