論文の概要: MCCE: Missingness-aware Causal Concept Explainer
- arxiv url: http://arxiv.org/abs/2411.09639v1
- Date: Thu, 14 Nov 2024 18:03:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:23:59.520532
- Title: MCCE: Missingness-aware Causal Concept Explainer
- Title(参考訳): MCCE: 欠如を意識した因果関係の解説者
- Authors: Jifan Gao, Guanhua Chen,
- Abstract要約: 我々は、すべての概念が観測可能でない場合に因果概念効果を推定するために、ミススティングネス対応因果概念記述器(MCCE)を導入する。
本フレームワークでは,概念不足による残差を考慮し,これらの概念とブラックボックス機械学習モデルの出力の関係を線形予測器を用いてモデル化する。
我々は実世界のデータセットを用いて検証を行い、MCCEが因果概念効果推定における最先端の説明手法と比較して有望な性能を達成することを示す。
- 参考スコア(独自算出の注目度): 4.56242146925245
- License:
- Abstract: Causal concept effect estimation is gaining increasing interest in the field of interpretable machine learning. This general approach explains the behaviors of machine learning models by estimating the causal effect of human-understandable concepts, which represent high-level knowledge more comprehensibly than raw inputs like tokens. However, existing causal concept effect explanation methods assume complete observation of all concepts involved within the dataset, which can fail in practice due to incomplete annotations or missing concept data. We theoretically demonstrate that unobserved concepts can bias the estimation of the causal effects of observed concepts. To address this limitation, we introduce the Missingness-aware Causal Concept Explainer (MCCE), a novel framework specifically designed to estimate causal concept effects when not all concepts are observable. Our framework learns to account for residual bias resulting from missing concepts and utilizes a linear predictor to model the relationships between these concepts and the outputs of black-box machine learning models. It can offer explanations on both local and global levels. We conduct validations using a real-world dataset, demonstrating that MCCE achieves promising performance compared to state-of-the-art explanation methods in causal concept effect estimation.
- Abstract(参考訳): 因果概念効果推定は、解釈可能な機械学習分野への関心が高まっている。
この一般的なアプローチは、トークンのような生の入力よりも理解しやすい高レベルの知識を表す、人間の理解可能な概念の因果効果を推定することで、機械学習モデルの振る舞いを説明する。
しかし、既存の因果的概念効果説明法では、データセットに含まれるすべての概念の完全な観察を前提としており、不完全なアノテーションや欠落した概念データのために実際に失敗する可能性がある。
理論的には、観測された概念の因果効果の推定には、観測されていない概念が偏りがあることを実証する。
この制限に対処するために,すべての概念が観測可能でない場合に因果的概念効果を推定する新しいフレームワークであるMissingness-Aware Causal Concept Explainer (MCCE)を導入する。
本フレームワークでは,概念不足による残差を考慮し,これらの概念とブラックボックス機械学習モデルの出力の関係を線形予測器を用いてモデル化する。
地域レベルと世界レベルの両方について説明することができる。
我々は実世界のデータセットを用いて検証を行い、MCCEが因果概念効果推定における最先端の説明手法と比較して有望な性能を達成することを示す。
関連論文リスト
- MulCPred: Learning Multi-modal Concepts for Explainable Pedestrian Action Prediction [57.483718822429346]
MulCPredは、トレーニングサンプルで表されるマルチモーダルな概念に基づいて、その予測を説明する。
MulCPredは複数のデータセットとタスクで評価される。
論文 参考訳(メタデータ) (2024-09-14T14:15:28Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - Evaluating Readability and Faithfulness of Concept-based Explanations [35.48852504832633]
概念に基づく説明は、大規模言語モデルによって学習された高レベルのパターンを説明するための有望な道として現れます。
現在の手法は、統一的な形式化を欠いた異なる視点から概念にアプローチする。
これにより、概念の中核となる尺度、すなわち忠実さや可読性を評価するのが難しくなります。
論文 参考訳(メタデータ) (2024-04-29T09:20:25Z) - DiConStruct: Causal Concept-based Explanations through Black-Box
Distillation [9.735426765564474]
本稿では,概念ベースと因果性の両方を考慮した説明手法であるDiConStructを提案する。
本報告では, ブラックボックス機械学習モデルに対する蒸留モデルとして, その予測を近似し, それぞれの説明を生成する。
論文 参考訳(メタデータ) (2024-01-16T17:54:02Z) - Do Concept Bottleneck Models Respect Localities? [14.77558378567965]
概念に基づく手法は、人間の理解可能な概念を用いてモデル予測を説明する。
ローカリティ(Localities)とは、概念の価値を予測する際に、関連する機能のみを使用することである。
CBMは、独立概念が重複しない特徴部分集合に局所化されている場合でも、局所性を捉えない。
論文 参考訳(メタデータ) (2024-01-02T16:05:23Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
一般合成ゼロショット学習は、ゼロショット方式で属性オブジェクト対の合成概念を学習する手段である。
本稿では,これら2つの課題を統一的なフレームワークで解決するために,翻訳概念の埋め込み(translational concept embedded)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-20T21:27:51Z) - Promises and Pitfalls of Black-Box Concept Learning Models [26.787383014558802]
概念学習を取り入れた機械学習モデルは、事前に定義された概念を超えて情報をエンコードする。
自然緩和戦略は完全には機能せず、下流予測の解釈を誤解させる。
論文 参考訳(メタデータ) (2021-06-24T21:00:28Z) - Debiasing Concept-based Explanations with Causal Analysis [4.911435444514558]
本研究は,特徴の相違する情報と相関する概念の問題点について考察する。
観測されていない変数の影響をモデル化するための新しい因果前グラフを提案する。
提案手法は,概念が完成していない場合に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-22T15:42:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。