論文の概要: How do Machine Learning Models Change?
- arxiv url: http://arxiv.org/abs/2411.09645v2
- Date: Mon, 10 Nov 2025 14:45:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 14:55:59.631446
- Title: How do Machine Learning Models Change?
- Title(参考訳): 機械学習モデルはどのように変化するか?
- Authors: Joel Castaño, Rafael Cabañas, Antonio Salmerón, David Lo, Silverio Martínez-Fernández,
- Abstract要約: 本研究は、Hugging Faceで10万台のモデルから680,000件のコミットと202台のモデルから2,251件のコミットを分析した。
コミットを分類し,ベイズネットワークを用いてコミット・リリース活動の時間パターンをモデル化するために,拡張ML変更分類を適用した。
- 参考スコア(独自算出の注目度): 7.78045494365902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of Machine Learning (ML) models and their open-source implementations has transformed Artificial Intelligence research and applications. Platforms like Hugging Face (HF) enable this evolving ecosystem, yet a large-scale longitudinal study of how these models change is lacking. This study addresses this gap by analyzing over 680,000 commits from 100,000 models and 2,251 releases from 202 of these models on HF using repository mining and longitudinal methods. We apply an extended ML change taxonomy to classify commits and use Bayesian networks to model temporal patterns in commit and release activities. Our findings show that commit activities align with established data science methodologies, such as the Cross-Industry Standard Process for Data Mining (CRISP-DM), emphasizing iterative refinement. Release patterns tend to consolidate significant updates, particularly in model outputs, sharing, and documentation, distinguishing them from granular commits. Furthermore, projects with higher popularity exhibit distinct evolutionary paths, often starting from a more mature baseline with fewer foundational commits in their public history. In contrast, those with intensive collaboration show unique documentation and technical evolution patterns. These insights enhance the understanding of model changes on community platforms and provide valuable guidance for best practices in model maintenance.
- Abstract(参考訳): 機械学習(ML)モデルの普及と、そのオープンソース実装は、人工知能の研究と応用を変革した。
Hugging Face(HF)のようなプラットフォームは、この進化するエコシステムを実現する。
本研究では,10万モデルから680,000件のコミットと,202件のHF上での2,251件のコミットをリポジトリマイニングと縦断的手法を用いて解析することにより,このギャップを解消する。
コミットを分類し,ベイズネットワークを用いてコミット・リリース活動の時間パターンをモデル化するために,拡張ML変更分類を適用した。
その結果,コミット活動は,CRISP-DM(Cross-Industry Standard Process for Data Mining)などの確立したデータサイエンス方法論と一致し,反復的精錬を重視した。
リリースパターンは、特にモデル出力、共有、ドキュメントにおいて重要な更新を集約し、粒度の細かいコミットと区別する傾向がある。
さらに、高い人気を持つプロジェクトは、しばしば、より成熟したベースラインから始まり、公的な歴史において基礎的なコミットが少なくなる、明確な進化の道を示す。
対照的に、集中的なコラボレーションを持つ人は、ユニークなドキュメンテーションと技術的な進化パターンを示しています。
これらの洞察は、コミュニティプラットフォームにおけるモデル変更の理解を促進し、モデルメンテナンスにおけるベストプラクティスのための貴重なガイダンスを提供する。
関連論文リスト
- A Comprehensive Survey on Continual Learning in Generative Models [35.76314482046672]
本稿では,主流生成モデルに対する連続学習手法の包括的調査を行う。
これらのアプローチをアーキテクチャベース、正規化ベース、リプレイベースという3つのパラダイムに分類する。
我々は、トレーニング目標、ベンチマーク、コアバックボーンを含む、異なる生成モデルに対する連続的な学習設定を分析する。
論文 参考訳(メタデータ) (2025-06-16T02:27:25Z) - Model Merging in Pre-training of Large Language Models [39.413435498849445]
本稿では,事前学習過程におけるモデルマージ手法について包括的に検討する。
一定の学習率で訓練されたチェックポイントをマージすることで、大幅な性能向上が達成できることを示す。
我々は、効果的なモデルマージのための実践的な事前トレーニングガイドラインをオープンソースコミュニティに提供する。
論文 参考訳(メタデータ) (2025-05-17T16:53:14Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
生成検索は、検索を自己回帰生成タスクとして再構成し、大きな言語モデルがクエリから直接ターゲット文書を生成する。
生成的検索におけるトレーニングと推論のスケーリング法則を体系的に検討し,モデルのサイズ,トレーニングデータスケール,推論時間計算が協調的に性能に与える影響について検討した。
論文 参考訳(メタデータ) (2025-03-24T17:59:03Z) - From Task-Specific Models to Unified Systems: A Review of Model Merging Approaches [13.778158813149833]
本稿では、モデルマージ手法の新たな分類法を確立し、異なるアプローチを体系的に比較し、重要な展開の概要を提供する。
この分野での急速な進歩にもかかわらず、最近の進歩と今後の方向性を予測する包括的な分類学と調査はいまだに欠落している。
論文 参考訳(メタデータ) (2025-03-12T02:17:31Z) - Research on the Online Update Method for Retrieval-Augmented Generation (RAG) Model with Incremental Learning [13.076087281398813]
提案手法は,知識保持と推論精度の観点から,既存の主流比較モデルよりも優れている。
実験の結果,提案手法は知識保持と推論精度の観点から,既存の主流比較モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-01-13T05:16:14Z) - Boosting Alignment for Post-Unlearning Text-to-Image Generative Models [55.82190434534429]
大規模な生成モデルは、大量のデータによって推進される印象的な画像生成能力を示している。
これはしばしば必然的に有害なコンテンツや不適切なコンテンツを生み出し、著作権の懸念を引き起こす。
学習しない反復ごとに最適なモデル更新を求めるフレームワークを提案し、両方の目的に対して単調な改善を確実にする。
論文 参考訳(メタデータ) (2024-12-09T21:36:10Z) - Scaling New Frontiers: Insights into Large Recommendation Models [74.77410470984168]
MetaのジェネレーティブレコメンデーションモデルHSTUは、パラメータを数千億に拡張することでレコメンデーションシステムのスケーリング法則を説明している。
我々は、これらのスケーリング法則の起源を探るため、包括的なアブレーション研究を行っている。
大規模なレコメンデーションモデルの今後の方向性に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-12-01T07:27:20Z) - Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations [0.0]
本研究はLlama Lora-Integrated Autorregresive ModelであるLLIAMを提案する。
低ランク適応は、微調整フェーズとして知られる様々な時系列データセットでモデルの知識を高めるために使用される。
論文 参考訳(メタデータ) (2024-10-15T12:14:01Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
モデルマージは、機械学習コミュニティにおける効率的なエンパワーメント技術である。
これらの手法の体系的かつ徹底的なレビューに関する文献には大きなギャップがある。
論文 参考訳(メタデータ) (2024-08-14T16:58:48Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。
本稿では,エネルギーベースモデル,拡散モデル,アクションバリューマップ,生成的敵ネットワークなど,コミュニティが探求してきたさまざまなモデルについて述べる。
また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
論文 参考訳(メタデータ) (2024-08-08T11:34:31Z) - Data Augmentation for Multivariate Time Series Classification: An Experimental Study [1.5390962520179197]
これらのデータセットのサイズは限られていますが、RocketとInceptionTimeモデルを使用して、13のデータセットのうち10の分類精度を向上しました。
これは、コンピュータビジョンで見られる進歩と並行して、効果的なモデルを訓練する上で、十分なデータの重要性を強調している。
論文 参考訳(メタデータ) (2024-06-10T17:58:02Z) - TSPP: A Unified Benchmarking Tool for Time-series Forecasting [3.5415344166235534]
本稿では,時系列予測モデルの開発に係わる重要なモデリングと機械学習の決定を明らかにする,統一的なベンチマークフレームワークを提案する。
このフレームワークは、モデルとデータセットのシームレスな統合を促進し、実践者と研究者の両方が開発作業を支援する。
このフレームワーク内で最近提案されたモデルをベンチマークし、最小限の努力で注意深く実装されたディープラーニングモデルは、勾配決定木に匹敵する可能性があることを実証した。
論文 参考訳(メタデータ) (2023-12-28T16:23:58Z) - Analyzing the Evolution and Maintenance of ML Models on Hugging Face [8.409033836300761]
Hugging Face(HF)は、マシンラーニング(ML)モデルの開発と共有のための重要なプラットフォームとして、自らを確立している。
このリポジトリマイニング調査は、HF Hub API経由で収集されたデータを使用して、380,000以上のモデルに分類し、HFにホストされたモデルに関するコミュニティの関与、進化、メンテナンスを探求することを目的としている。
論文 参考訳(メタデータ) (2023-11-22T13:20:25Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Learning to Augment via Implicit Differentiation for Domain
Generalization [107.9666735637355]
ドメイン一般化(DG)は、複数のソースドメインを活用してドメイン一般化可能なモデルを学ぶことで、この問題を克服することを目的としている。
本稿では,AugLearnと呼ばれる新しい拡張型DG手法を提案する。
AugLearnは、PACS、Office-Home、Digits-DGの3つの標準DGベンチマークで効果を示す。
論文 参考訳(メタデータ) (2022-10-25T18:51:51Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
アクティブラーニングは、モデルのパラメータに適合するために必要なデータ量を削減しようとする。
潜在変数モデルは神経科学、心理学、その他の様々な工学、科学分野において重要な役割を果たす。
論文 参考訳(メタデータ) (2022-02-27T19:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。