論文の概要: Squeezed Attention: Accelerating Long Context Length LLM Inference
- arxiv url: http://arxiv.org/abs/2411.09688v2
- Date: Sat, 23 Nov 2024 22:11:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:15:58.506641
- Title: Squeezed Attention: Accelerating Long Context Length LLM Inference
- Title(参考訳): Squeezed Attention: 長期LLM推論の高速化
- Authors: Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Monishwaran Maheswaran, June Paik, Michael W. Mahoney, Kurt Keutzer, Amir Gholami,
- Abstract要約: 本稿では,入力プロンプトの大部分を固定したLLMアプリケーションを高速化する機構として,Squeezed Attentionを提案する。
K-meansクラスタリングをオフラインで使用して、セマンティックな類似性に基づいて、固定されたコンテキストのキーをグループ化し、各クラスタを単一のセントロイド値で表現します。
そして、固定された文脈から重要なキーのみを用いて正確な注意を計算し、帯域幅と計算コストを削減する。
- 参考スコア(独自算出の注目度): 64.11145320159126
- License:
- Abstract: Emerging Large Language Model (LLM) applications require long input prompts to perform complex downstream tasks like document analysis and code generation. For these long context length applications, the length of the input prompt poses a significant challenge in terms of inference efficiency since the inference costs increase linearly with sequence length. However, for many of these applications, much of the context in the prompt is fixed across different user inputs, thereby providing the opportunity to perform offline optimizations to process user inputs quickly, as they are received. In this work, we propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed. We first leverage K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value. During inference, we compare query tokens from the user input with the centroids to predict which of the keys from the fixed context are semantically relevant and need to be loaded during inference. We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs. We also extend our method to use a hierarchical centroid lookup to identify important keys, which can reduce the complexity of attention from linear to logarithmic with respect to the context length. We implement optimized Triton kernels for centroid comparison and sparse FlashAttention with important keys, achieving more than 4x speedups during both the prefill and generation phases for long-context inference. Furthermore, we have extensively evaluated our method on various long-context benchmarks including LongBench, where it achieves a 3x reduction in KV cache budget without accuracy loss and up to an 8x reduction with <0.5 point accuracy gap for various models.
- Abstract(参考訳): Emerging Large Language Model (LLM)アプリケーションは、ドキュメント分析やコード生成といった複雑な下流タスクを実行するために、長い入力プロンプトを必要とする。
これらの長い文脈長の応用において、入力プロンプトの長さは、推論コストがシーケンス長と線形に増加するため、推論効率の観点から大きな課題となる。
しかし、これらのアプリケーションの多くは、プロンプトのコンテキストの多くが異なるユーザ入力にまたがって固定されているため、受信したユーザ入力を迅速に処理するためのオフライン最適化を行う機会を提供する。
本研究では,入力プロンプトの大部分を固定したLLMアプリケーションを高速化する機構として,Squeezed Attentionを提案する。
まず、K-meansクラスタリングをオフラインで利用して、セマンティックな類似性に基づいて、固定されたコンテキストのキーをグループ化し、各クラスタを単一のセントロイド値で表現する。
推論中、ユーザ入力からのクエリトークンとセントロイドを比較して、固定されたコンテキストからのキーのどれが意味論的に関連があり、推論中にロードする必要があるかを予測します。
そして、固定された文脈から重要なキーのみを用いて正確な注意を計算し、帯域幅と計算コストを削減する。
また,重要鍵の同定に階層的なセントロイド検索を用いることで,コンテキスト長に対する注意の複雑さを線形から対数に低減することができる。
センタロイド比較のための最適化されたTritonカーネルを実装し、FlashAttentionを重要なキーでスパースし、長文推論のためのプリフィルと生成フェーズの両方で4倍以上の高速化を実現した。
さらに,LongBenchなどの長文ベンチマークを用いて,精度損失を伴わずにKVキャッシュの予算を3倍削減し,各モデルに対して<0.5ポイント精度ギャップを有する最大8倍削減する手法を広く評価した。
関連論文リスト
- Recycled Attention: Efficient inference for long-context language models [54.00118604124301]
本稿では,入力トークンのサブセットに対して,フルコンテキストアテンションとアテンションを交互に切り替える推論時間手法であるRecycled Attentionを提案する。
部分的に注意を払っていると、全注意を払っている前のトークンの注意パターンをリサイクルし、最も出席しているトークンの上位Kにのみ出席する。
提案手法は,局所的な文脈や注目スコアの高いトークンにのみ参加する推論時加速度法と比較して,現在の復号ステップに関連するトークンを柔軟に選択する。
論文 参考訳(メタデータ) (2024-11-08T18:57:07Z) - TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection [23.20856449846164]
TokenSelectは、モデルに依存しない、訓練のない、効率的で正確な長文推論手法である。
TokenSelectの総合評価では、注意点の最大23.84倍、エンドツーエンドのレイテンシの最大2.28倍の高速化が示されている。
論文 参考訳(メタデータ) (2024-11-05T07:56:24Z) - What is Wrong with Perplexity for Long-context Language Modeling? [71.34933096461124]
長いコンテキスト入力は、会話の拡張、文書の要約、多数のショットインコンテキスト学習といったタスクにおいて、大きな言語モデル(LLM)にとって不可欠である。
パープレキシティ(PPL)は、長期コンテキスト能力の評価には信頼性が低いことが証明されている。
長短コンテキストコントラスト法を用いて鍵トークンを識別する手法であるbfLongPPLを提案する。
論文 参考訳(メタデータ) (2024-10-31T09:39:28Z) - CritiPrefill: A Segment-wise Criticality-based Approach for Prefilling Acceleration in LLMs [8.649971923487835]
本稿では,CritiPrefillを提案する。
CritiPrefillは、入力シーケンスのクエリとKVキャッシュをセグメントとブロックに分割する。
複数の長コンテキストデータセットの大規模な評価では、Llama3-8Bで2.7倍、Yi-9Bで3.0倍、単一のA100 GPUで128Kのコンテキスト長を持つ。
論文 参考訳(メタデータ) (2024-09-19T06:09:56Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z) - HyperAttention: Long-context Attention in Near-Linear Time [78.33061530066185]
本稿では,長期的文脈の複雑さの増大に伴う計算課題に対処するため,HyperAttentionという近似的な注意機構を提案する。
実証的には、大規模なエントリを特定するためにLocality Sensitive Hashing(LSH)を使用して、HyperAttentionは既存のメソッドよりも優れています。
各種長文長データセットにおけるHyperAttentionの実証的性能を検証した。
論文 参考訳(メタデータ) (2023-10-09T17:05:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。