論文の概要: SparseAccelerate: Efficient Long-Context Inference for Mid-Range GPUs
- arxiv url: http://arxiv.org/abs/2412.06198v1
- Date: Mon, 09 Dec 2024 04:27:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:55:48.260270
- Title: SparseAccelerate: Efficient Long-Context Inference for Mid-Range GPUs
- Title(参考訳): SparseAccelerate: ミッドランジGPUのための効率的なロングコンテキスト推論
- Authors: James Vo,
- Abstract要約: SparseAccelerateは動的スパースアテンション手法であり、入力特性に基づいてその疎度パターンを適応する。
実験結果から,SparseAccelerateは最大1.04倍のTTTF遅延を32Kトークンで達成した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As Large Language Models (LLMs) scale to longer context windows, the computational cost of attention mechanisms, which traditionally grows quadratically with input length, presents a critical challenge for real-time and memory-constrained deployments. Existing sparse attention techniques have sought to reduce this complexity, but they often incur significant overhead or compromise accuracy, making them less practical for large contexts on mid-range hardware. In this paper, we introduce SparseAccelerate, a dynamic sparse attention method that adapts its sparsity patterns based on input characteristics, effectively flattening the attention complexity curve. Our approach is effective for input lengths starting at 16K tokens and scales efficiently up to 128K tokens on dual NVIDIA A5000 GPUs (24GB each). Experimental results show that SparseAccelerate achieves up to a 1.04x reduction in Time-To-First-Token (TTFT) latency at 32K tokens, while also providing substantial memory savings. These improvements yield practical gains for memory-intensive applications and long-context tasks that were previously infeasible with standard attention. Beyond latency reductions, SparseAccelerate fundamentally shifts the scaling trend, demonstrating the smallest TTFT growth gradient relative to context length among competing methods. Ongoing evaluations on diverse benchmarks confirm its scalability, positioning SparseAccelerate as a critical advancement toward efficient, real-time, and large-context LLM inference on accessible hardware.
- Abstract(参考訳): LLM(Large Language Models)が長期のコンテキストウインドウにスケールするにつれて、従来は入力長の4倍に成長するアテンション機構の計算コストは、リアルタイムおよびメモリ制約によるデプロイメントにおいて重要な課題となっている。
既存のスパースアテンション技術は、この複雑さを減らそうとしているが、それらはしばしばかなりのオーバーヘッドや精度を発生させ、中距離ハードウェアにおける大きなコンテキストにおいて実用的でない。
本稿では,入力特性に基づいてスパースパターンを適応し,注意複雑性曲線を効果的にフラット化する動的スパースアテンション手法であるSparseAccelerateを紹介する。
提案手法は16Kのトークンから128Kのトークンを2つのNVIDIA A5000 GPU(24GB)に効率よくスケールアップする。
実験の結果,SparseAccelerateは32KトークンでのTTFTレイテンシの最大1.04倍の低減を実現し,メモリの大幅な節約を実現した。
これらの改善は、メモリ集約型アプリケーションや、これまで標準の注意を払って実現不可能だった長期コンテキストタスクに対して、実用的な利益をもたらす。
レイテンシ削減以外にも、SparseAccelerateはスケーリングトレンドを根本的にシフトさせ、競合するメソッド間のコンテキスト長に対して最小のTTFT成長勾配を示す。
さまざまなベンチマークによる評価によりスケーラビリティが確認され、SparseAccelerateは、アクセス可能なハードウェア上での効率性、リアルタイム性、大規模なLLM推論への重要な進歩として位置づけられている。
関連論文リスト
- Squeezed Attention: Accelerating Long Context Length LLM Inference [64.11145320159126]
本稿では,入力プロンプトの大部分を固定したLLMアプリケーションを高速化する機構として,Squeezed Attentionを提案する。
K-meansクラスタリングをオフラインで使用して、セマンティックな類似性に基づいて、固定されたコンテキストのキーをグループ化し、各クラスタを単一のセントロイド値で表現します。
そして、固定された文脈から重要なキーのみを用いて正確な注意を計算し、帯域幅と計算コストを削減する。
論文 参考訳(メタデータ) (2024-11-14T18:54:19Z) - Faster Diffusion Action Segmentation [9.868244939496678]
時間的行動分類(TAS)はビデオ解析において不可欠な課題であり、連続したフレームを別のアクションセグメントに分割し分類することを目的としている。
拡散モデルの最近の進歩は、安定したトレーニングプロセスと高品質な生成能力により、TASタスクにおいて大きな成功を収めている。
本稿では,効率的かつ高性能なTASアルゴリズムであるEffiDiffActを提案する。
論文 参考訳(メタデータ) (2024-08-04T13:23:18Z) - MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention [36.49445805074941]
Minference (Milliontokens Inference) は長周期処理の前処理を高速化するスパース計算法である。
我々は,MInferenceが精度を維持しつつ,A100にプリフィルする際の推論遅延を最大10倍に効果的に低減できることを実証した。
論文 参考訳(メタデータ) (2024-07-02T17:59:56Z) - UIO-LLMs: Unbiased Incremental Optimization for Long-Context LLMs [111.12010207132204]
UIO-LLMsは、長いコンテキスト設定下でのメモリ拡張トランスフォーマーの漸進的な最適化手法である。
本稿では,TBPTTアルゴリズムを用いて学習過程を改良する。
UIO-LLMは、Llama2-7b-chatのコンテキストウィンドウを4Kから100Kトークンに、2%の追加パラメータで拡張するなど、長いコンテキストを扱うことに成功した。
論文 参考訳(メタデータ) (2024-06-26T08:44:36Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
トランスフォーマーベースのモデルは、自然言語処理の最も広く使われているアーキテクチャの1つとして登場した。
これらの巨大なモデルはメモリが空腹で、最先端のAIアクセラレータでも大きな推論レイテンシが生じる。
本稿ではトークン生成フェーズの自己認識をスケーラブルに計算する手法であるLeanAttentionを提案する。
論文 参考訳(メタデータ) (2024-05-17T00:52:39Z) - Bifurcated Attention: Accelerating Massively Parallel Decoding with Shared Prefixes in LLMs [39.16152482491236]
Bifurcated attentionは、共有コンテキストバッチデコードシナリオにおける言語モデル推論を強化するために設計された手法である。
提案手法は,高バッチサイズおよび拡張コンテキスト長のレイテンシに寄与する重要な要因である冗長メモリIOコストの課題に対処する。
論文 参考訳(メタデータ) (2024-03-13T16:30:57Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
ディセンス光学フロー推定は、多くのロボットビジョンタスクで重要な役割を果たしています。
現在のネットワークはしばしば多くのパラメータを占有し、計算コストがかかる。
提案したFastFlowNetは、周知の粗大なやり方で、以下のイノベーションで機能する。
論文 参考訳(メタデータ) (2021-03-08T03:09:37Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
BERTのようなトランスフォーマーベースの言語モデルでは、自然言語処理(NLP)タスクの精度が大幅に向上する。
We present EdgeBERT, a in-deepth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP。
論文 参考訳(メタデータ) (2020-11-28T19:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。