Feature Selection via Dynamic Graph-based Attention Block in MI-based EEG Signals
- URL: http://arxiv.org/abs/2411.09709v1
- Date: Thu, 31 Oct 2024 00:53:29 GMT
- Title: Feature Selection via Dynamic Graph-based Attention Block in MI-based EEG Signals
- Authors: Hyeon-Taek Han, Dae-Hyeok Lee, Heon-Gyu Kwak,
- Abstract summary: Brain-computer interface (BCI) technology enables direct interaction between humans and computers by analyzing brain signals.
EEG signals are often affected by a low signal-to-noise ratio, physiological artifacts, and individual variability, representing challenges in extracting distinct features.
Also, motor imagery (MI)-based EEG signals could contain features with low correlation to MI characteristics, which might cause the weights of the deep model to become biased towards those features.
- Score: 0.0
- License:
- Abstract: Brain-computer interface (BCI) technology enables direct interaction between humans and computers by analyzing brain signals. Electroencephalogram (EEG) is one of the non-invasive tools used in BCI systems, providing high temporal resolution for real-time applications. However, EEG signals are often affected by a low signal-to-noise ratio, physiological artifacts, and individual variability, representing challenges in extracting distinct features. Also, motor imagery (MI)-based EEG signals could contain features with low correlation to MI characteristics, which might cause the weights of the deep model to become biased towards those features. To address these problems, we proposed the end-to-end deep preprocessing method that effectively enhances MI characteristics while attenuating features with low correlation to MI characteristics. The proposed method consisted of the temporal, spatial, graph, and similarity blocks to preprocess MI-based EEG signals, aiming to extract more discriminative features and improve the robustness. We evaluated the proposed method using the public dataset 2a of BCI Competition IV to compare the performances when integrating the proposed method into the conventional models, including the DeepConvNet, the M-ShallowConvNet, and the EEGNet. The experimental results showed that the proposed method could achieve the improved performances and lead to more clustered feature distributions of MI tasks. Hence, we demonstrated that our proposed method could enhance discriminative features related to MI characteristics.
Related papers
- Enhanced Fault Detection and Cause Identification Using Integrated Attention Mechanism [0.3749861135832073]
This study introduces a novel methodology for fault detection and cause identification within the Tennessee Eastman Process (TEP) by integrating a Bidirectional Long Short-Term Memory (BiLSTM) neural network with an Integrated Attention Mechanism (IAM)
The IAM combines the strengths of scaled dot product attention, residual attention, and dynamic attention to capture intricate patterns and dependencies crucial for TEP fault detection.
The BiLSTM network processes these features bidirectionally to capture long-range dependencies, and the IAM further refines the output, leading to improved fault detection results.
arXiv Detail & Related papers (2024-07-31T12:01:57Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Optimizing Brain-Computer Interface Performance: Advancing EEG Signals Channel Selection through Regularized CSP and SPEA II Multi-Objective Optimization [13.981941979747305]
RCSP exhibits efficacy in the discrimination and classification of EEG signals.
We employ a state-of-the-art approach in the selection of a subset of channels from a multichannel EEG signal with MI tasks.
arXiv Detail & Related papers (2024-04-26T00:04:41Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
We propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module.
We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset and on a new EEG dataset of unprecedented size.
The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening.
arXiv Detail & Related papers (2021-10-19T14:22:04Z) - Hybrid Data Augmentation and Deep Attention-based Dilated
Convolutional-Recurrent Neural Networks for Speech Emotion Recognition [1.1086440815804228]
We investigate hybrid data augmentation (HDA) methods to generate and balance data based on traditional and generative adversarial networks (GAN) methods.
To evaluate the effectiveness of HDA methods, a deep learning framework namely (ADCRNN) is designed by integrating deep dilated convolutional-recurrent neural networks with an attention mechanism.
For validating our proposed methods, we use the EmoDB dataset that consists of several emotions with imbalanced samples.
arXiv Detail & Related papers (2021-09-18T23:13:44Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition [9.039355687614076]
This paper presents a novel deep learning approach designed towards remarkably accurate and responsive motor imagery (MI) recognition based on scalp EEG.
BiLSTM with the Attention mechanism manages to derive relevant features from raw EEG signals.
The 0.4-second detection framework has shown effective and efficient prediction based on individual and group-wise training, with 98.81% and 94.64% accuracy, respectively.
arXiv Detail & Related papers (2020-05-02T10:03:40Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
Brain-Computer Interfaces (BCI) based on Electroencephalography (EEG) signals have received a lot of attention.
Motor imagery (MI) data can be used to aid rehabilitation as well as in autonomous driving scenarios.
classification of MI signals is vital for EEG-based BCI systems.
arXiv Detail & Related papers (2020-03-03T02:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.