Physics-informed neural networks (PINNs) for numerical model error approximation and superresolution
- URL: http://arxiv.org/abs/2411.09728v1
- Date: Thu, 14 Nov 2024 17:03:09 GMT
- Title: Physics-informed neural networks (PINNs) for numerical model error approximation and superresolution
- Authors: Bozhou Zhuang, Sashank Rana, Brandon Jones, Danny Smyl,
- Abstract summary: We propose physics-informed neural networks (PINNs) for simultaneous numerical model error approximation and superresolution.
PINNs effectively predict model errors in both x and y displacement fields with small differences between predictions and ground truth.
Our findings demonstrate that the integration of physics-informed loss functions enables neural networks (NNs) to surpass a purely data-driven approach for approximating model errors.
- Score: 3.4393226199074114
- License:
- Abstract: Numerical modeling errors are unavoidable in finite element analysis. The presence of model errors inherently reflects both model accuracy and uncertainty. To date there have been few methods for explicitly quantifying errors at points of interest (e.g. at finite element nodes). The lack of explicit model error approximators has been addressed recently with the emergence of machine learning (ML), which closes the loop between numerical model features/solutions and explicit model error approximations. In this paper, we propose physics-informed neural networks (PINNs) for simultaneous numerical model error approximation and superresolution. To test our approach, numerical data was generated using finite element simulations on a two-dimensional elastic plate with a central opening. Four- and eight-node quadrilateral elements were used in the discretization to represent the reduced-order and higher-order models, respectively. It was found that the developed PINNs effectively predict model errors in both x and y displacement fields with small differences between predictions and ground truth. Our findings demonstrate that the integration of physics-informed loss functions enables neural networks (NNs) to surpass a purely data-driven approach for approximating model errors.
Related papers
- Deep Networks as Denoising Algorithms: Sample-Efficient Learning of
Diffusion Models in High-Dimensional Graphical Models [22.353510613540564]
We investigate the approximation efficiency of score functions by deep neural networks in generative modeling.
We observe score functions can often be well-approximated in graphical models through variational inference denoising algorithms.
We provide an efficient sample complexity bound for diffusion-based generative modeling when the score function is learned by deep neural networks.
arXiv Detail & Related papers (2023-09-20T15:51:10Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Probabilistic model-error assessment of deep learning proxies: an
application to real-time inversion of borehole electromagnetic measurements [0.0]
We study the effects of the approximate nature of the deep learned models and associated model errors during the inversion of extra-deep borehole electromagnetic (EM) measurements.
Using a deep neural network (DNN) as a forward model allows us to perform thousands of model evaluations within seconds.
We present numerical results highlighting the challenges associated with the inversion of EM measurements while neglecting model error.
arXiv Detail & Related papers (2022-05-25T11:44:48Z) - Closed-form discovery of structural errors in models of chaotic systems
by integrating Bayesian sparse regression and data assimilation [0.0]
We introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation.
In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states.
If observations are noisy, a data assimilation technique such as ensemble Kalman filter (EnKF) is first used to provide a noise-free analysis state of the system.
Finally, an equation-discovery technique, such as the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, closed
arXiv Detail & Related papers (2021-10-01T17:19:28Z) - Combining data assimilation and machine learning to estimate parameters
of a convective-scale model [0.0]
Errors in the representation of clouds in convection-permitting numerical weather prediction models can be introduced by different sources.
In this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural networks.
arXiv Detail & Related papers (2021-09-07T09:17:29Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Stochastic analysis of heterogeneous porous material with modified
neural architecture search (NAS) based physics-informed neural networks using
transfer learning [0.0]
modified neural architecture search method (NAS) based physics-informed deep learning model is presented.
A three dimensional flow model is built to provide a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers.
arXiv Detail & Related papers (2020-10-03T19:57:54Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.