Probabilistic model-error assessment of deep learning proxies: an
application to real-time inversion of borehole electromagnetic measurements
- URL: http://arxiv.org/abs/2205.12684v1
- Date: Wed, 25 May 2022 11:44:48 GMT
- Title: Probabilistic model-error assessment of deep learning proxies: an
application to real-time inversion of borehole electromagnetic measurements
- Authors: Muzammil Hussain Rammay, Sergey Alyaev, Ahmed H Elsheikh
- Abstract summary: We study the effects of the approximate nature of the deep learned models and associated model errors during the inversion of extra-deep borehole electromagnetic (EM) measurements.
Using a deep neural network (DNN) as a forward model allows us to perform thousands of model evaluations within seconds.
We present numerical results highlighting the challenges associated with the inversion of EM measurements while neglecting model error.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of fast sensing technologies allows for real-time model updates in
many applications where the model parameters are uncertain. Bayesian
algorithms, such as ensemble smoothers, offer a real-time probabilistic
inversion accounting for uncertainties. However, they rely on the repeated
evaluation of the computational models, and deep neural network (DNN) based
proxies can be useful to address this computational bottleneck. This paper
studies the effects of the approximate nature of the deep learned models and
associated model errors during the inversion of extra-deep borehole
electromagnetic (EM) measurements, which are critical for geosteering. Using a
deep neural network (DNN) as a forward model allows us to perform thousands of
model evaluations within seconds, which is very useful for quantifying
uncertainties and non-uniqueness in real-time. While significant efforts are
usually made to ensure the accuracy of the DNN models, it is known that they
contain unknown model errors in the regions not covered by the training data.
When DNNs are utilized during inversion of EM measurements, the effects of the
model errors could manifest themselves as a bias in the estimated input
parameters and, consequently, might result in a low-quality geosteering
decision. We present numerical results highlighting the challenges associated
with the inversion of EM measurements while neglecting model error. We further
demonstrate the utility of a recently proposed flexible iterative ensemble
smoother in reducing the effect of model bias by capturing the unknown model
errors, thus improving the quality of the estimated subsurface properties for
geosteering operation. Moreover, we describe a procedure for identifying
inversion multimodality and propose possible solutions to alleviate it in
real-time.
Related papers
- Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Strategic Geosteeering Workflow with Uncertainty Quantification and Deep
Learning: A Case Study on the Goliat Field [0.0]
This paper presents a practical workflow consisting of offline and online phases.
The offline phase includes training and building of an uncertain prior near-well geo-model.
The online phase uses the flexible iterative ensemble smoother (FlexIES) to perform real-time assimilation of extra-deep electromagnetic data.
arXiv Detail & Related papers (2022-10-27T15:38:26Z) - Deep Neural Network Based Accelerated Failure Time Models using Rank
Loss [0.0]
An accelerated failure time (AFT) model assumes a log-linear relationship between failure times and a set of covariates.
Deep neural networks (DNNs) have received a focal attention over the past decades and have achieved remarkable success in a variety of fields.
We propose to apply DNNs in fitting AFT models using a Gehan-type loss, combined with a sub-sampling technique.
arXiv Detail & Related papers (2022-06-13T08:38:18Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
We propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator.
The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference.
We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-04T18:12:17Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Parameter Estimation with Dense and Convolutional Neural Networks
Applied to the FitzHugh-Nagumo ODE [0.0]
We present deep neural networks using dense and convolutional layers to solve an inverse problem, where we seek to estimate parameters of a Fitz-Nagumo model.
We demonstrate that deep neural networks have the potential to estimate parameters in dynamical models and processes, and they are capable of predicting parameters accurately for the framework.
arXiv Detail & Related papers (2020-12-12T01:20:42Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.