論文の概要: Modeling human decomposition: a Bayesian approach
- arxiv url: http://arxiv.org/abs/2411.09802v1
- Date: Thu, 14 Nov 2024 20:37:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:45.307682
- Title: Modeling human decomposition: a Bayesian approach
- Title(参考訳): 人間の分解のモデル化 : ベイズ的アプローチ
- Authors: D. Hudson Smith, Noah Nisbet, Carl Ehrett, Cristina I. Tica, Madeline M. Atwell, Katherine E. Weisensee,
- Abstract要約: 我々は、死後間隔(PMI)に基づく人骨の分解のための生成確率モデルを開発する。
このモデルは、PMIを含む各変数が各分解特性の外観に与える影響を明示的に表現する。
その結果,ROC AUCスコア0.85で24個の分解特性を正確に予測できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Environmental and individualistic variables affect the rate of human decomposition in complex ways. These effects complicate the estimation of the postmortem interval (PMI) based on observed decomposition characteristics. In this work, we develop a generative probabilistic model for decomposing human remains based on PMI and a wide range of environmental and individualistic variables. This model explicitly represents the effect of each variable, including PMI, on the appearance of each decomposition characteristic, allowing for direct interpretation of model effects and enabling the use of the model for PMI inference and optimal experimental design. In addition, the probabilistic nature of the model allows for the integration of expert knowledge in the form of prior distributions. We fit this model to a diverse set of 2,529 cases from the GeoFOR dataset. We demonstrate that the model accurately predicts 24 decomposition characteristics with an ROC AUC score of 0.85. Using Bayesian inference techniques, we invert the decomposition model to predict PMI as a function of the observed decomposition characteristics and environmental and individualistic variables, producing an R-squared measure of 71%. Finally, we demonstrate how to use the fitted model to design future experiments that maximize the expected amount of new information about the mechanisms of decomposition using the Expected Information Gain formalism.
- Abstract(参考訳): 環境と個人主義の変数は、複雑な方法での人間の分解の速度に影響を与える。
これらの効果は、観察された分解特性に基づいて、死後間隔(PMI)の推定を複雑化する。
本研究では,PMIと多種多様な環境・個人性変数に基づいて,人間の遺骨を分解する生成確率モデルを構築した。
このモデルは、PMIを含む各変数が各分解特性の外観に及ぼす影響を明確に表現し、モデル効果を直接解釈し、PMI推論と最適実験設計にモデルを使用することを可能にした。
さらに、モデルの確率的性質は、事前分布の形で専門家の知識を統合することを可能にする。
このモデルをGeoFORデータセットから2,529のさまざまなケースに適合させる。
ROC AUCスコア0.85で24個の分解特性を精度良く予測できることを実証した。
ベイズ推定法を用いて, 観測された分解特性と環境および個人性変数の関数としてPMIを予測する分解モデルを逆転させ, R-2乗測度を71%とした。
最後に, 予測情報ゲインフォーマリズムを用いて, 分解機構に関する新たな情報量の期待を最大化する将来の実験を設計するために, 適合モデルを用いる方法を示す。
関連論文リスト
- Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
この研究は、変数推論を用いて、意見力学 ABM のパラメータを推定する。
我々は推論プロセスを自動微分に適した最適化問題に変換する。
提案手法は, シミュレーションベース法とMCMC法より, マクロ的(有界信頼区間とバックファイア閾値)と微視的(200ドル, エージェントレベルの役割)の両方を正確に推定する。
論文 参考訳(メタデータ) (2024-03-08T14:45:18Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - On the Properties and Estimation of Pointwise Mutual Information Profiles [49.877314063833296]
ポイントワイド相互情報プロファイル(ポイントワイド相互情報プロファイル、英: pointwise mutual information profile)は、与えられた確率変数のペアに対するポイントワイド相互情報の分布である。
そこで我々は,モンテカルロ法を用いて分布を正確に推定できる新しい分布系 Bend と Mix Models を導入する。
論文 参考訳(メタデータ) (2023-10-16T10:02:24Z) - Bayesian Additive Main Effects and Multiplicative Interaction Models
using Tensor Regression for Multi-environmental Trials [0.0]
本稿では,複数の因子が表現型予測に与える影響を考慮したベイズテンソル回帰モデルを提案する。
我々は、モデルのパラメータ間で生じる可能性のある識別可能性の問題を解決するための、事前分布のセットを採用する。
我々は2010年から2019年までのアイルランドにおける小麦生産に関する実世界のデータを分析して、我々のモデルの適用性を探る。
論文 参考訳(メタデータ) (2023-01-09T19:54:50Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
新型コロナウイルスのパンデミックは、感染モデルに対する強固な理解の必要性を強調している。
本稿では2つのアプローチをブリッジする単純な混合モデルを提案する。
モデルは非機械的であるが、ネットワーク化されたSIRフレームワークに基づくプロセスの自然な結果として現れることを示す。
論文 参考訳(メタデータ) (2022-01-07T19:42:05Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
粒子変分推論(PVI)は、後部分布の実験的近似としてモデルのアンサンブルを用いる。
PVIは、最適化されたモデルの多様性を保証するために、各モデルを反発力で反復的に更新する。
我々は,新たな一般化誤差を導出し,モデルの多様性を高めて低減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T12:13:51Z) - Gaussian Function On Response Surface Estimation [12.35564140065216]
メタモデリング手法によるブラックボックス機械学習モデルの解釈(機能とサンプル)のための新しいフレームワークを提案する。
メタモデルは、興味のある領域のデータサンプルでコンピュータ実験を実行することによって、訓練された複雑なモデルによって生成されたデータから推定することができる。
論文 参考訳(メタデータ) (2021-01-04T04:47:00Z) - PSD2 Explainable AI Model for Credit Scoring [0.0]
本研究の目的は、信用リスクモデルの予測精度を向上させるための高度な分析手法の開発と試験である。
このプロジェクトは、銀行関連のデータベースに説明可能な機械学習モデルを適用することに焦点を当てている。
論文 参考訳(メタデータ) (2020-11-20T12:12:38Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。