論文の概要: PSD2 Explainable AI Model for Credit Scoring
- arxiv url: http://arxiv.org/abs/2011.10367v3
- Date: Fri, 6 Aug 2021 16:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 05:13:48.254602
- Title: PSD2 Explainable AI Model for Credit Scoring
- Title(参考訳): PSD2 Credit Scoringのための説明可能なAIモデル
- Authors: Neus Llop Torrent (1 and 2), Giorgio Visani (2 and 3), Enrico Bagli
(2) ((1) Politecnico di Milano Graduate School of Business, (2) CRIF S.p.A,
(3) University of Bologna School of Informatics and Engineering)
- Abstract要約: 本研究の目的は、信用リスクモデルの予測精度を向上させるための高度な分析手法の開発と試験である。
このプロジェクトは、銀行関連のデータベースに説明可能な機械学習モデルを適用することに焦点を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this project is to develop and test advanced analytical methods to
improve the prediction accuracy of Credit Risk Models, preserving at the same
time the model interpretability. In particular, the project focuses on applying
an explainable machine learning model to bank-related databases. The input data
were obtained from open data. Over the total proven models, CatBoost has shown
the highest performance. The algorithm implementation produces a GINI of 0.68
after tuning the hyper-parameters. SHAP package is used to provide a global and
local interpretation of the model predictions to formulate a
human-comprehensive approach to understanding the decision-maker algorithm. The
20 most important features are selected using the Shapley values to present a
full human-understandable model that reveals how the attributes of an
individual are related to its model prediction.
- Abstract(参考訳): 本研究の目的は、信用リスクモデルの予測精度を向上させるための高度な分析手法の開発と試験であり、モデル解釈可能性と同時に保存することである。
特にこのプロジェクトは、銀行関連のデータベースに説明可能な機械学習モデルを適用することに焦点を当てている。
入力データはオープンデータから得られた。
実証されたモデル全体で、CatBoostは最高のパフォーマンスを示している。
アルゴリズムの実装は、ハイパーパラメータをチューニングした後、0.68のGINIを生成する。
SHAPパッケージは、モデル予測のグローバルかつ局所的な解釈を提供し、意思決定アルゴリズムを理解するための人間的なアプローチを定式化するために使用される。
最も重要な20の機能は、Shapley値を使用して選択され、モデルの予測に個人の属性がどのように関連しているかを明らかにする完全な人間理解可能なモデルが提示される。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Characterizing Disparity Between Edge Models and High-Accuracy Base Models for Vision Tasks [5.081175754775484]
XDELTAは、高精度ベースモデルと計算効率が良いが低精度エッジモデルの違いを説明する、説明可能な新しいAIツールである。
我々は、XDELTAのモデル不一致を説明する能力をテストするための総合的な評価を行い、120万以上の画像と24のモデルを使用し、6人の参加者による実世界の展開を評価する。
論文 参考訳(メタデータ) (2024-07-13T22:05:58Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Decomposing and Editing Predictions by Modeling Model Computation [75.37535202884463]
コンポーネントモデリングというタスクを導入します。
コンポーネントモデリングの目標は、MLモデルの予測をコンポーネントの観点から分解することだ。
コンポーネント属性を推定するスケーラブルなアルゴリズムであるCOARを提案する。
論文 参考訳(メタデータ) (2024-04-17T16:28:08Z) - Beyond explaining: XAI-based Adaptive Learning with SHAP Clustering for
Energy Consumption Prediction [0.0]
モデル予測を説明するためのSHAP値を取得し、異なるパターンと外れ値を特定するためのSHAP値をクラスタリングし、派生したSHAPクラスタリング特性に基づいてモデルを精錬する。
両タスクタイプにおいて,本手法の有効性を実証し,予測性能と解釈可能なモデル説明の改善を図った。
論文 参考訳(メタデータ) (2024-02-07T15:58:51Z) - A performance characteristic curve for model evaluation: the application
in information diffusion prediction [3.8711489380602804]
拡散データ中のランダム性を定量化するために,情報エントロピーに基づくメトリクスを提案し,モデルのランダム性と予測精度の間のスケーリングパターンを同定する。
異なるシーケンス長、システムサイズ、ランダム性によるパターンのデータポイントは、すべて単一の曲線に崩壊し、正しい予測を行うモデル固有の能力を取得する。
曲線の妥当性は、同じ家系の3つの予測モデルによって検証され、既存の研究と一致して結論に達する。
論文 参考訳(メタデータ) (2023-09-18T07:32:57Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
本研究では,ジェネレーティブ・アドバイサル・ネットワークや正規化フローなどの生成モデルのための新しいトレーニング手法を開発した。
指定された精度-リコールトレードオフを達成することは、textitPR-divergencesと呼ぶ家族からのユニークな$f$-divergenceを最小化することを意味する。
当社のアプローチは,ImageNetなどのデータセットでテストした場合の精度とリコールの両面で,BigGANのような既存の最先端モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-05-30T10:07:17Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Energy Predictive Models for Convolutional Neural Networks on Mobile
Platforms [0.0]
モバイルデバイスにディープラーニングモデルをデプロイする場合、エネルギー利用は重要な懸念事項である。
我々はJetson TX1とSnapdragon 820上に12の代表的なConvolutional NeuralNetworks(ConvNets)を用いて、完全な接続層とプール層のための層型予測モデルを構築した。
ハードウェアとソフトウェアの組み合わせによるテストConvNetの全体的なエネルギー予測において,精度は76%から85%,モデル複雑度は1。
論文 参考訳(メタデータ) (2020-04-10T17:35:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。