論文の概要: Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning
- arxiv url: http://arxiv.org/abs/2411.09849v1
- Date: Thu, 14 Nov 2024 23:56:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:47.238262
- Title: Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning
- Title(参考訳): 自己監督型ラジオ事前学習:スペクトログラム学習の基礎モデルに向けて
- Authors: Ahmed Aboulfotouh, Ashkan Eshaghbeigi, Dimitrios Karslidis, Hatem Abou-Zeid,
- Abstract要約: Foundational Deep Learning(DL)モデルは、多種多様で多様なデータセットに基づいてトレーニングされた一般的なモデルである。
本稿では,無線信号を用いた基礎DLモデルの事前学習のための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
- 参考スコア(独自算出の注目度): 6.1339395157466425
- License:
- Abstract: Foundational deep learning (DL) models are general models, trained on large, diverse, and unlabelled datasets, typically using self-supervised learning techniques have led to significant advancements especially in natural language processing. These pretrained models can be fine-tuned for related downstream tasks, offering faster development and reduced training costs, while often achieving improved performance. In this work, we introduce Masked Spectrogram Modeling, a novel self-supervised learning approach for pretraining foundational DL models on radio signals. Adopting a Convolutional LSTM architecture for efficient spatio-temporal processing, we pretrain the model with an unlabelled radio dataset collected from over-the-air measurements. Subsequently, the pretrained model is fine-tuned for two downstream tasks: spectrum forecasting and segmentation. Experimental results demonstrate that our methodology achieves competitive performance in both forecasting accuracy and segmentation, validating its effectiveness for developing foundational radio models.
- Abstract(参考訳): 基礎的深層学習(DL)モデルは、大規模で多種多様で遅延のないデータセットに基づいて訓練された一般的なモデルであり、一般的には自己教師付き学習技術を用いて、特に自然言語処理において顕著な進歩をもたらした。
これらの事前訓練されたモデルは、関連する下流タスクのために微調整され、開発速度が向上し、トレーニングコストが削減され、パフォーマンスが向上することが多い。
本稿では,基礎的なDLモデルを無線信号で事前学習するための,新しい自己教師型学習手法であるMasked Spectrogram Modelingを紹介する。
効率の良い時空間処理のための畳み込みLSTMアーキテクチャを採用することで、空気上測定から収集した未ラベルの無線データセットを用いてモデルを事前訓練する。
その後、事前訓練されたモデルは、スペクトル予測とセグメンテーションという2つの下流タスクのために微調整される。
実験結果から,提案手法は精度とセグメンテーションの両面での競合性能を実証し,基礎的無線モデル開発の有効性を検証した。
関連論文リスト
- Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
本稿では,大規模データに基づく基礎モデルの事前学習と微調整を効果的に行うための第1種フレームワークを提案する。
我々はこの枠組みを利用して、マルチスペクトル衛星画像の1TB以上を事前トレーニングしたトランスフォーマーベースの基礎モデルであるPrithviを開発した。
論文 参考訳(メタデータ) (2023-10-28T10:19:55Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
本稿では,密度推定のための生成モデルを訓練するためのフレームワークを提案する。
スコアベース拡散モデルを用いてラベル付きデータを生成する。
ラベル付きデータが生成されると、シンプルな完全に接続されたニューラルネットワークをトレーニングして、教師付き方法で生成モデルを学ぶことができます。
論文 参考訳(メタデータ) (2023-10-22T23:56:19Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
本研究では,異なるスケールでの事前学習と微調整の結果を近似する分布から,エミュレート・ファインチューニング(EFT)を原理的かつ実用的なサンプリング法として導入する。
EFTは、追加トレーニングを伴わずに、有益性や無害性といった競合する行動特性をテスト時間で調整できることを示す。
最後に、LMアップスケーリングと呼ばれるエミュレートされたファインチューニングの特殊な場合において、小さなファインチューニングモデルと組み合わせることで、大きな事前学習モデルのリソース集約的なファインチューニングを回避する。
論文 参考訳(メタデータ) (2023-10-19T17:57:16Z) - Training dynamic models using early exits for automatic speech
recognition on resource-constrained devices [15.879328412777008]
初期のアーキテクチャは、そのサイズとアーキテクチャを様々なレベルの計算リソースとASRパフォーマンス要求に適応できる動的モデルの開発を可能にする。
また,スクラッチからトレーニングした早期退避モデルは,エンコーダ層が少ない場合に性能を保ちつつ,単一退避モデルや事前学習モデルと比較してタスク精度が向上することを示した。
結果は、ASRモデルの早期アーキテクチャのトレーニングダイナミクスに関する洞察を与える。
論文 参考訳(メタデータ) (2023-09-18T07:45:16Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Semi-Supervised Learning Based on Reference Model for Low-resource TTS [32.731900584216724]
本稿では,ラベル付きターゲットデータに制限があるニューラルネットワークの半教師付き学習手法を提案する。
実験結果から,対象データに制限のある半教師付き学習手法は,音声合成における自然性と頑健性を達成するために,テストデータの音声品質を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2022-10-25T07:48:07Z) - METRO: Efficient Denoising Pretraining of Large Scale Autoencoding
Language Models with Model Generated Signals [151.3601429216877]
本稿では,補助モデルにより生成された学習信号を用いて,大規模自動符号化言語モデルの事前学習を行う。
我々は「モデル生成dEnoising TRaining Objective」(METRO)というレシピを提案する。
結果、最大54億のパラメータからなるMETRO-LMは、GLUE、SuperGLUE、SQuADベンチマークで新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-04-13T21:39:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。