SymbolFit: Automatic Parametric Modeling with Symbolic Regression
- URL: http://arxiv.org/abs/2411.09851v2
- Date: Tue, 11 Feb 2025 02:11:22 GMT
- Title: SymbolFit: Automatic Parametric Modeling with Symbolic Regression
- Authors: Ho Fung Tsoi, Dylan Rankin, Cecile Caillol, Miles Cranmer, Sridhara Dasu, Javier Duarte, Philip Harris, Elliot Lipeles, Vladimir Loncar,
- Abstract summary: We introduce SymbolFit, a framework that automates parametric modeling by using symbolic regression to perform a machine-search for functions that fit the data.
Our approach is demonstrated in data analysis applications in high-energy physics experiments at the CERN Large Hadron Collider.
- Score: 1.2662552408022727
- License:
- Abstract: We introduce SymbolFit, a framework that automates parametric modeling by using symbolic regression to perform a machine-search for functions that fit the data, while simultaneously providing uncertainty estimates in a single run. Traditionally, constructing a parametric model to accurately describe binned data has been a manual and iterative process, requiring an adequate functional form to be determined before the fit can be performed. The main challenge arises when the appropriate functional forms cannot be derived from first principles, especially when there is no underlying true closed-form function for the distribution. In this work, we address this problem by utilizing symbolic regression, a machine learning technique that explores a vast space of candidate functions without needing a predefined functional form, treating the functional form itself as a trainable parameter. Our approach is demonstrated in data analysis applications in high-energy physics experiments at the CERN Large Hadron Collider (LHC). We demonstrate its effectiveness and efficiency using five real proton-proton collision datasets from new physics searches at the LHC, namely the background modeling in resonance searches for high-mass dijet, trijet, paired-dijet, diphoton, and dimuon events. We also validate the framework using several toy datasets with one and more variables.
Related papers
- Inferring Interpretable Models of Fragmentation Functions using Symbolic Regression [10.091537548478655]
We present the first study that infers, directly from experimental data, a functional form of fragmentation functions.
This study represents an approach to follow in such QCD-related phenomenology studies and more generally in sciences.
arXiv Detail & Related papers (2025-01-13T08:25:14Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Neural Lumped Parameter Differential Equations with Application in
Friction-Stir Processing [2.158307833088858]
Lumped parameter methods aim to simplify the evolution of spatially-extended or continuous physical systems.
We build upon the notion of the Universal Differential Equation to construct data-driven models for reducing dynamics to that of a lumped parameter.
arXiv Detail & Related papers (2023-04-18T15:11:27Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
This paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines.
The stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques.
Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated.
arXiv Detail & Related papers (2023-03-01T02:29:41Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.
This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
We propose a framework that can integrate all kinds of differential equations into Gaussian processes.
Our method shows improvement upon vanilla GPs in both simulation and several real-world applications.
arXiv Detail & Related papers (2022-02-24T19:02:14Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Data-based Discovery of Governing Equations [1.574365819926238]
We propose a Data-based Physics Discovery (DPD) framework for automatic discovery of governing equations from observed data.
We demonstrate the performance of the proposed framework on a real-world application in the aerospace industry.
arXiv Detail & Related papers (2020-12-05T16:10:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.