On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques
- URL: http://arxiv.org/abs/2303.00187v1
- Date: Wed, 1 Mar 2023 02:29:41 GMT
- Title: On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques
- Authors: Omid Sedehi, Antonina M. Kosikova, Costas Papadimitriou, Lambros S.
Katafygiotis
- Abstract summary: This paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines.
The stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques.
Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) has widely been used for modeling and predicting
physical systems. These techniques offer high expressive power and good
generalizability for interpolation within observed data sets. However, the
disadvantage of black-box models is that they underperform under blind
conditions since no physical knowledge is incorporated. Physics-based ML aims
to address this problem by retaining the mathematical flexibility of ML
techniques while incorporating physics. In accord, this paper proposes to embed
mechanics-based models into the mean function of a Gaussian Process (GP) model
and characterize potential discrepancies through kernel machines. A specific
class of kernel function is promoted, which has a connection with the gradient
of the physics-based model with respect to the input and parameters and shares
similarity with the exact Autocovariance function of linear dynamical systems.
The spectral properties of the kernel function enable considering dominant
periodic processes originating from physics misspecification. Nevertheless, the
stationarity of the kernel function is a difficult hurdle in the sequential
processing of long data sets, resolved through hierarchical Bayesian
techniques. This implementation is also advantageous to mitigate computational
costs, alleviating the scalability of GPs when dealing with sequential data.
Using numerical and experimental examples, potential applications of the
proposed method to structural dynamics inverse problems are demonstrated.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Physics-Informed Variational State-Space Gaussian Processes [23.57905861783904]
We introduce a variational-temporal state-temporal GP that handles linear and non-linear physical constraints while achieving efficient linear-in-time costs.
We demonstrate our methods in a range of synthetic and real-world settings and outperform the current state-of-the-art in both predictive and computational performance.
arXiv Detail & Related papers (2024-09-20T20:12:11Z) - Differentiable Neural-Integrated Meshfree Method for Forward and Inverse Modeling of Finite Strain Hyperelasticity [1.290382979353427]
The present study aims to extend the novel physics-informed machine learning approach, specifically the neural-integrated meshfree (NIM) method, to model finite-strain problems.
Thanks to the inherent differentiable programming capabilities, NIM can circumvent the need for derivation of Newton-Raphson linearization of the variational form.
NIM is applied to identify heterogeneous mechanical properties of hyperelastic materials from strain data, validating its effectiveness in the inverse modeling of nonlinear materials.
arXiv Detail & Related papers (2024-07-15T19:15:18Z) - Data-Driven Computing Methods for Nonlinear Physics Systems with Geometric Constraints [0.7252027234425334]
This paper introduces a novel, data-driven framework that synergizes physics-based priors with advanced machine learning techniques.
Our framework showcases four algorithms, each embedding a specific physics-based prior tailored to a particular class of nonlinear systems.
The integration of these priors also enhances the expressive power of neural networks, enabling them to capture complex patterns typical in physical phenomena.
arXiv Detail & Related papers (2024-06-20T23:10:41Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
We propose a framework that can integrate all kinds of differential equations into Gaussian processes.
Our method shows improvement upon vanilla GPs in both simulation and several real-world applications.
arXiv Detail & Related papers (2022-02-24T19:02:14Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
We propose a learning framework to extract, from molecular dynamics data, an optimal Linear Peridynamic Solid model.
We provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions.
This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training.
arXiv Detail & Related papers (2021-08-04T07:07:47Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.