論文の概要: InterFormer: Towards Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction
- arxiv url: http://arxiv.org/abs/2411.09852v1
- Date: Fri, 15 Nov 2024 00:20:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:39:30.879499
- Title: InterFormer: Towards Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction
- Title(参考訳): InterFormer: クリックスルーレート予測のための効果的な異種インタラクション学習を目指して
- Authors: Zhichen Zeng, Xiaolong Liu, Mengyue Hang, Xiaoyi Liu, Qinghai Zhou, Chaofei Yang, Yiqun Liu, Yichen Ruan, Laming Chen, Yuxin Chen, Yujia Hao, Jiaqi Xu, Jade Nie, Xi Liu, Buyun Zhang, Wei Wen, Siyang Yuan, Kai Wang, Wen-Yen Chen, Yiping Han, Huayu Li, Chunzhi Yang, Bo Long, Philip S. Yu, Hanghang Tong, Jiyan Yang,
- Abstract要約: 我々はインターリービング方式で異種情報インタラクションを学習するInterFormerという新しいモジュールを提案する。
提案するInterFormerは,3つのパブリックデータセットと大規模産業データセットに対して,最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 72.50606292994341
- License:
- Abstract: Click-through rate (CTR) prediction, which predicts the probability of a user clicking an ad, is a fundamental task in recommender systems. The emergence of heterogeneous information, such as user profile and behavior sequences, depicts user interests from different aspects. A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction. However, most of the existing methods suffer from two fundamental limitations, including (1) insufficient inter-mode interaction due to the unidirectional information flow between modes, and (2) aggressive information aggregation caused by early summarization, resulting in excessive information loss. To address the above limitations, we propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style. To achieve better interaction learning, InterFormer enables bidirectional information flow for mutually beneficial learning across different modes. To avoid aggressive information aggregation, we retain complete information in each data mode and use a separate bridging arch for effective information selection and summarization. Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
- Abstract(参考訳): クリックスルーレート(CTR)予測は、ユーザーが広告をクリックする確率を予測するもので、レコメンデーションシステムにおいて基本的なタスクである。
ユーザプロファイルや行動シーケンスなどの異種情報の出現は、異なる側面からユーザ関心を描いている。
異種情報の相互に有益な統合は、CTR予測の成功に向けた基礎となる。
しかし,既存の手法の多くは,(1)モード間の一方向情報フローによるモード間相互作用の不足,(2)早期要約による攻撃的な情報集約など,基本的な2つの制約に悩まされている。
上記の制限に対処するため、インターフォーマーという新しいモジュールを提案し、インターリービング方式で異種情報相互作用を学習する。
より優れたインタラクション学習を実現するために、InterFormerは異なるモードで相互に有益な学習を行うための双方向情報フローを可能にする。
攻撃的な情報収集を避けるため、各データモードで完全な情報を保持し、効果的な情報選択と要約のために別々のブリッジアーチを使用する。
提案するInterFormerは,3つのパブリックデータセットと大規模産業データセットに対して,最先端のパフォーマンスを実現する。
関連論文リスト
- Two-stream Multi-level Dynamic Point Transformer for Two-person Interaction Recognition [45.0131792009999]
本稿では,2人インタラクション認識のための2ストリームマルチレベル動的ポイント変換器を提案する。
本モデルでは,局所空間情報,外観情報,動作情報を組み込むことで,対人インタラクションを認識するという課題に対処する。
我々のネットワークは、ほとんどの標準的な評価設定において最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-07-22T03:51:32Z) - Boundary-aware Supervoxel-level Iteratively Refined Interactive 3D Image
Segmentation with Multi-agent Reinforcement Learning [33.181732857907384]
我々は,マルコフ決定プロセス(MDP)を用いた対話型画像分割をモデル化し,強化学習(RL)による解法を提案する。
ボクセル単位の予測のための大規模な探索空間を考えると, エージェント間でボクセルレベルポリシーを共有するマルチエージェント強化学習が採用されている。
4つのベンチマークデータセットによる実験結果から,提案手法は最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-19T15:52:56Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
マルチタイプの行動(例えば、クリック、カートの追加、購入など)は、ほとんどの現実世界のレコメンデーションシナリオに広く存在する。
最先端のマルチ振る舞いモデルは、すべての歴史的相互作用を入力として区別しない振る舞い依存を学習する。
本稿では,多様な行動に対する共有的・行動特異的な関心を学習するための,多目的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-03T05:28:14Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
本稿では,近隣相互作用に基づくCTR予測を提案し,そのタスクを異種情報ネットワーク(HIN)設定に組み込む。
周辺地域の表現を高めるために,ノード間のトポロジカルな相互作用を4種類検討する。
本研究では,2つの実世界のデータセットに関する総合的な実験を行い,提案手法が最先端のCTRモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-01-25T12:44:23Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Information Interaction Profile of Choice Adoption [2.9972063833424216]
相互作用するエンティティを分離する時間的距離に応じて、エンティティの相互作用ネットワークとその進化を推定する効率的な方法を紹介します。
相互作用プロファイルは、相互作用プロセスのメカニズムを特徴付けることができます。
ユーザに対する露出の組み合わせの効果は、各露出の独立した効果の総和以上のものであることを示す。
論文 参考訳(メタデータ) (2021-04-28T10:42:25Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。