論文の概要: Towards quantum-centric simulations of extended molecules: sample-based quantum diagonalization enhanced with density matrix embedding theory
- arxiv url: http://arxiv.org/abs/2411.09861v1
- Date: Fri, 15 Nov 2024 00:42:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:56.362450
- Title: Towards quantum-centric simulations of extended molecules: sample-based quantum diagonalization enhanced with density matrix embedding theory
- Title(参考訳): 拡張分子の量子中心シミュレーションに向けて:密度行列埋め込み理論で強化されたサンプルベース量子対角化
- Authors: Akhil Shajan, Danil Kaliakin, Abhishek Mitra, Javier Robledo Moreno, Zhen Li, Mario Motta, Caleb Johnson, Abdullah Ash Saki, Susanta Das, Iskandar Sitdikov, Antonio Mezzacapo, Kenneth M. Merz Jr,
- Abstract要約: サンプルベース量子対角化法(SQD)と組み合わせて実施した第1密度行列埋め込み理論(DMET)について述べる。
我々はDMET-SQD形式を用いて18個の水素原子の環の基底状態エネルギーと、シクロヘキサンの椅子、半チェア、ねじれボート、ボートコンホメータの相対エネルギーを計算する。
我々のDMET-SQD計算は、短期量子コンピュータで正確に取り組めるアクティブ領域のサイズが明らかに進歩していることを示す。
- 参考スコア(独自算出の注目度): 1.641227459215045
- License:
- Abstract: Computing ground-state properties of molecules is a promising application for quantum computers operating in concert with classical high-performance computing resources. Quantum embedding methods are a family of algorithms particularly suited to these computational platforms: they combine high-level calculations on active regions of a molecule with low-level calculations on the surrounding environment, thereby avoiding expensive high-level full-molecule calculations and allowing to distribute computational cost across multiple and heterogeneous computing units. Here, we present the first density matrix embedding theory (DMET) simulations performed in combination with the sample-based quantum diagonalization (SQD) method. We employ the DMET-SQD formalism to compute the ground-state energy of a ring of 18 hydrogen atoms, and the relative energies of the chair, half-chair, twist-boat, and boat conformers of cyclohexane. The full-molecule 41- and 89-qubit simulations are decomposed into 27- and 32-qubit active-region simulations, that we carry out on the ibm_cleveland device, obtaining results in agreement with reference classical methods. Our DMET-SQD calculations mark a tangible progress in the size of active regions that can be accurately tackled by near-term quantum computers, and are an early demonstration of the potential for quantum-centric simulations to accurately treat the electronic structure of large molecules, with the ultimate goal of tackling systems such as peptides and proteins.
- Abstract(参考訳): 分子の基底状態特性の計算は、古典的な高性能計算資源と協調して動作する量子コンピュータにとって有望な応用である。
量子埋め込み法は、分子の活性領域上の高レベルな計算と周囲の環境における低レベルな計算を組み合わせることで、高価な高レベルな全分子計算を回避し、計算コストを複数の不均一な計算ユニットに分散させることによって、これらの計算プラットフォームに特に適するアルゴリズムのファミリーである。
本稿では、サンプルベース量子対角化法(SQD)と組み合わせて実施した第一密度行列埋め込み理論(DMET)について述べる。
我々はDMET-SQD形式を用いて18個の水素原子の環の基底状態エネルギーと、シクロヘキサンの椅子、半チェア、ねじれボート、ボートコンホメータの相対エネルギーを計算する。
ibm_cleveland デバイス上で行う全分子 41 および 89 キュービットシミュレーションは27 および 32 キュービットの能動領域シミュレーションに分解され,古典的手法と一致した結果が得られる。
我々のDMET-SQD計算は、近距離量子コンピュータで正確に取り組める活性領域の大きさの具体的な進歩を示すものであり、ペプチドやタンパク質などのシステムに取り組むことのゴールとして、大きな分子の電子構造を正確に扱う量子中心シミュレーションの可能性の早期の実証である。
関連論文リスト
- Quantum-centric computation of molecular excited states with extended sample-based quantum diagonalization [0.0]
分子電子構造のシミュレーションは、量子デバイスの重要な応用である。
サンプルベース量子対角化(SQD)アルゴリズムを拡張し、低分子励起状態を決定する。
論文 参考訳(メタデータ) (2024-11-01T09:33:08Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
一般ポテンシャルを持つ中性子核シミュレーションのための新しい量子アルゴリズムを開発した。
耐雑音性トレーニング法により、ノイズの存在下でも許容される境界状態エネルギーを提供する。
距離群可換性(DGC)と呼ばれる新しい可換性スキームを導入し、その性能をよく知られたqubit-commutativityスキームと比較する。
論文 参考訳(メタデータ) (2024-02-22T16:33:48Z) - Workflow for practical quantum chemical calculations with quantum phase estimation algorithm: electronic ground and π-π* excited states of benzene and its derivatives† [0.0]
量子コンピュータは、従来のコンピュータに比べて計算資源が少ない完全構成の相互作用計算を実行することが期待されている。
QPEに基づく量子化学計算は、古典的コンピュータ上での数値シミュレーションにおいても報告されている。
電子グラウンドのQPEシミュレーションとベンゼンおよびそのクロロおよびニトロ誘導体のπ-pi*励起一重項状態について報告する。
論文 参考訳(メタデータ) (2023-12-27T01:57:39Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
ディジタル量子コンピュータ上で状態の密度を推定する量子アルゴリズムを実装した。
我々は,量子H1-1トラップイオンチップ上での非可積分ハミルトニアン状態の密度を18ビットの制御レジスタに対して推定する。
論文 参考訳(メタデータ) (2023-03-23T17:46:28Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Equation-of-motion variational quantum eigensolver method for computing
molecular excitation energies, ionization potentials, and electron affinities [4.21608910266125]
短期量子コンピュータは正確な分子シミュレーションを通じて物質と化学の研究を促進することが期待されている。
本稿では,変分量子固有解法に従って励起エネルギーを計算するための運動方程式に基づく手法を提案する。
論文 参考訳(メタデータ) (2022-06-21T16:21:04Z) - A Scalable Approach to Quantum Simulation via Projection-based Embedding [0.0]
分子の電子構造のサブドメインを量子デバイス上で正確に計算できる新しい、化学的に直感的なアプローチについて述べる。
本手法は,量子コンピュータ上では十分にシミュレートできないが,より低い近似レベルで古典的に解ける分子に対して,改良された結果が得られることを示す。
論文 参考訳(メタデータ) (2022-03-02T14:27:44Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
短期量子コンピュータは、小さな分子の基底状態特性を計算することができる。
計算アンサッツの構造と装置ノイズによる誤差が計算にどのように影響するかを示す。
論文 参考訳(メタデータ) (2021-12-31T16:33:10Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
本稿では、分子の全電子エネルギーと古典的コンピュータ上の特性を計算できる新しいハイブリッド古典的アルゴリズムを提案する。
本稿では,現在利用可能な量子コンピュータ上で,化学的に関連性のある結果と精度を実現する量子古典ハイブリッドアルゴリズムの能力を実証する。
論文 参考訳(メタデータ) (2021-06-22T18:00:00Z) - Resource Efficient Chemistry on Quantum Computers with the Variational
Quantum Eigensolver and The Double Unitary Coupled-Cluster approach [0.0]
量子ビットの数は分子基底の大きさに比例して線形にスケールすることを示す。
我々は、相関効果を小さくする軌道空間に効果的にダウンフォールドさせるために、Double Unitary coupled-cluster (DUCC)法を用いる。
ダウンフォールディング法を用いて、適切に構築された実効ハミルトニアンは、小型の活性空間における全軌道空間の効果を捉えることができることを示した。
論文 参考訳(メタデータ) (2020-04-16T15:59:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。