Distribution Function for $n \ge g$ Quantum Particles
- URL: http://arxiv.org/abs/2411.09877v1
- Date: Fri, 15 Nov 2024 01:53:48 GMT
- Title: Distribution Function for $n \ge g$ Quantum Particles
- Authors: Shimul Akhanjee,
- Abstract summary: The anomalous behavior of $nI(varepsilon)$ precludes Bose-Einstein condensation (BEC)
An exhaustive classification scheme is presented for both distinguishable and indistinguishable, particles and energy levels.
- Score: 0.0
- License:
- Abstract: A new quantum mechanical distribution function $n^I(\varepsilon)$, is derived for the condition $n \ge g$, where in contrast to the exclusion principle $n \le g$ for fermions, each energy state must be populated by at least one particle. Although the particles share many features with bosons, the anomalous behavior of $n^I(\varepsilon)$ precludes Bose-Einstein condensation (BEC) due to the required occupancy of the excited states, which creates a permanently pressurized background at $T=0$, similar to the degeneracy pressure of fermions. An exhaustive classification scheme is presented for both distinguishable and indistinguishable, particles and energy levels based on Richard Stanley's twelvefold way in combinatorics.
Related papers
- Hamiltonians for Quantum Systems with Contact Interactions [49.1574468325115]
We show that in the limit one obtains the one-body Hamiltonian for the light particle subject to $N$ (non-local) point interactions placed at fixed positions.
We will verify that such non-local point interactions do not exhibit the ultraviolet pathologies that are present in the case of standard local point interactions.
arXiv Detail & Related papers (2024-07-09T14:04:11Z) - Klein-Gordon oscillators and Bergman spaces [55.2480439325792]
We consider classical and quantum dynamics of relativistic oscillator in Minkowski space $mathbbR3,1$.
The general solution of this model is given by functions from the weighted Bergman space of square-integrable holomorphic (for particles) and antiholomorphic functions on the K"ahler-Einstein manifold $Z_6$.
arXiv Detail & Related papers (2024-05-23T09:20:56Z) - Quantum connection, charges and virtual particles [65.268245109828]
A quantum bundle $L_hbar$ is endowed with a connection $A_hbar$ and its sections are standard wave functions $psi$ obeying the Schr"odinger equation.
We will lift the bundles $L_Cpm$ and connection $A_hbar$ on them to the relativistic phase space $T*R3,1$ and couple them to the Dirac spinor bundle describing both particles and antiparticles.
arXiv Detail & Related papers (2023-10-10T10:27:09Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - The Principle of equal Probabilities of Quantum States [0.0]
Boltzmann law $P(epsilon) = frac1langle epsilon rangle-fracepsilonlangle epsilon rangle ; ; ;;;; 0leq epsilon +infty$ where $langle epsilon rangle = E/N$.
kappa quanta, is given by $p(kappa)=fracdisplaystyle binomN+s
arXiv Detail & Related papers (2021-11-17T17:23:46Z) - Bose--Einstein condensation for particles with repulsive short-range
pair interactions in a Poisson random external potential in $\mathbb R^d$ [0.0]
We study Bose gases in $d$ dimensions, $d ge 2$, with short-range repulsive pair interactions, at positive temperature, in the canonical ensemble and in the thermodynamic limit.
For sufficiently strong interparticle interactions, we show that almost surely there cannot be Bose-Einstein condensation into a sufficiently localized, normalized one-particle state.
arXiv Detail & Related papers (2021-10-09T14:52:14Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z) - Wavefunction structure in quantum many-fermion systems with $k$-body
interactions: conditional $q$-normal form of strength functions [0.40357531559576965]
For finite quantum many-particle systems modeled with say $m$ fermions in $N$ single particle states, the wavefunction structure is studied using random matrix theory.
It is shown that the first four moments of $F_kappa(E)$ are essentially same as that of the conditional $q$-normal distribution.
arXiv Detail & Related papers (2020-11-09T11:53:39Z) - Unitary unfoldings of Bose-Hubbard exceptional point with and without
particle number conservation [0.0]
Non-Hermitian but $cal PT-$symmetric quantum system of an $N-$plet of bosons described by Bose-Hubbard Hamiltonian $H(gamma,v,c)$ is picked up.
Non-Hermitian but $cal PT-$symmetric quantum system of an $N-$plet of bosons described by the three-parametric Bose-Hubbard Hamiltonian $H(gamma,v,c)$ is picked up.
arXiv Detail & Related papers (2020-08-28T21:06:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.