論文の概要: An Interpretable Neural Control Network with Adaptable Online Learning for Sample Efficient Robot Locomotion Learning
- arxiv url: http://arxiv.org/abs/2501.10698v1
- Date: Sat, 18 Jan 2025 08:37:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:20.831862
- Title: An Interpretable Neural Control Network with Adaptable Online Learning for Sample Efficient Robot Locomotion Learning
- Title(参考訳): 適応型オンライン学習を用いたロボットロコモーション学習のための解釈可能なニューラルネットワーク
- Authors: Arthicha Srisuchinnawong, Poramate Manoonpong,
- Abstract要約: シーケンシャル・モーション・エクゼクタ(Sequential Motion Executor, SME)は、3層の解釈可能なニューラルネットワークである。
Adaptable Gradient-weighting Online Learning (AGOL)アルゴリズムは、関連性の高いスコアを持つパラメータの更新を優先する。
SME-AGOLはサンプルを40%減らし、シミュレートされた六足歩行ロボットで最終報酬/移動性能が150%向上する。
- 参考スコア(独自算出の注目度): 7.6119527195998
- License:
- Abstract: Robot locomotion learning using reinforcement learning suffers from training sample inefficiency and exhibits the non-understandable/black-box nature. Thus, this work presents a novel SME-AGOL to address such problems. Firstly, Sequential Motion Executor (SME) is a three-layer interpretable neural network, where the first produces the sequentially propagating hidden states, the second constructs the corresponding triangular bases with minor non-neighbor interference, and the third maps the bases to the motor commands. Secondly, the Adaptable Gradient-weighting Online Learning (AGOL) algorithm prioritizes the update of the parameters with high relevance score, allowing the learning to focus more on the highly relevant ones. Thus, these two components lead to an analyzable framework, where each sequential hidden state/basis represents the learned key poses/robot configuration. Compared to state-of-the-art methods, the SME-AGOL requires 40% fewer samples and receives 150% higher final reward/locomotion performance on a simulated hexapod robot, while taking merely 10 minutes of learning time from scratch on a physical hexapod robot. Taken together, this work not only proposes the SME-AGOL for sample efficient and understandable locomotion learning but also emphasizes the potential exploitation of interpretability for improving sample efficiency and learning performance.
- Abstract(参考訳): 強化学習を用いたロボット移動学習は、トレーニングサンプルの非効率性に悩まされ、理解不能/ブラックボックスの性質を示す。
そこで本研究では,このような問題に対処する新しいSME-AGOLを提案する。
まず、SME(Sequential Motion Executor)は、3層の解釈可能なニューラルネットワークであり、第1はシーケンシャルに伝播する隠れ状態を生成し、第2は小さな非隣り合う干渉で対応する三角形のベースを構築し、第3はベースをモータ指令にマッピングする。
第二に、Adaptable Gradient-weighting Online Learning (AGOL)アルゴリズムは、パラメータの更新を高い関連性スコアで優先順位付けすることで、学習がより関連性の高いものに集中できるようにする。
このように、これらの2つのコンポーネントは分析可能なフレームワークにつながり、各シーケンシャルなシークエンスな状態/バスは学習されたキーのポーズ/ロボットの設定を表す。
最先端の手法と比較して、SME-AGOLはサンプルを40%減らし、シミュレートされた六脚ロボットの最終的な報酬/移動性能を150%高め、物理的六脚ロボットのスクラッチから学習するのに10分しかかからない。
本研究は, サンプル効率と学習性能を向上させるための解釈可能性の潜在的活用を強調した, サンプル効率と学習性能の向上を目的としたSME-AGOLを提案する。
関連論文リスト
- Self-Supervised Learning of Grasping Arbitrary Objects On-the-Move [8.445514342786579]
本研究では3つの完全畳み込みニューラルネットワーク(FCN)モデルを導入し,視覚入力から静的グリッププリミティブ,動的グリッププリミティブ,残留移動速度誤差を予測する。
提案手法は高い把握精度とピック・アンド・プレイス効率を実現した。
論文 参考訳(メタデータ) (2024-11-15T02:59:16Z) - MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning [17.437573206368494]
視覚深部強化学習(RL)は、ロボットが非構造化タスクの視覚入力からスキルを習得することを可能にする。
現在のアルゴリズムはサンプル効率が低く、実用性が制限されている。
本稿では,RLエージェントのアーキテクチャと最適化の両方を改善する手法であるMENTORを提案する。
論文 参考訳(メタデータ) (2024-10-19T04:31:54Z) - Imperative Learning: A Self-supervised Neural-Symbolic Learning Framework for Robot Autonomy [31.818923556912495]
我々は,ロボット自律のための自己教師型ニューラルシンボリック(NeSy)計算フレームワーク,インペラティブラーニング(IL)を導入する。
ILを2段階最適化(BLO)として定式化し、3つのモジュール間の相互学習を可能にする。
ILはロボットの自律性を大幅に向上させ、多様な領域にわたるさらなる研究を促進することを期待している。
論文 参考訳(メタデータ) (2024-06-23T12:02:17Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Efficient Adaptive Human-Object Interaction Detection with
Concept-guided Memory [64.11870454160614]
概念誘導メモリ(ADA-CM)を用いた適応型HOI検出器を提案する。
ADA-CMには2つの操作モードがある。最初のモードでは、トレーニング不要のパラダイムで新しいパラメータを学習することなくチューニングできる。
提案手法は, HICO-DET と V-COCO のデータセットに対して, より少ないトレーニング時間で, 最新技術による競合的な結果を得る。
論文 参考訳(メタデータ) (2023-09-07T13:10:06Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Class Anchor Margin Loss for Content-Based Image Retrieval [97.81742911657497]
距離学習パラダイムに該当する新しいレペラ・トラクタ損失を提案するが、ペアを生成する必要がなく、直接L2メトリックに最適化する。
CBIRタスクにおいて,畳み込みアーキテクチャと変圧器アーキテクチャの両方を用いて,少数ショットおよびフルセットトレーニングの文脈で提案した目的を評価する。
論文 参考訳(メタデータ) (2023-06-01T12:53:10Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - One to Many: Adaptive Instrument Segmentation via Meta Learning and
Dynamic Online Adaptation in Robotic Surgical Video [71.43912903508765]
MDALは、ロボット支援手術における機器セグメンテーションのための動的オンライン適応学習スキームです。
ビデオ固有のメタ学習パラダイムを通じて、楽器の一般的な知識と高速適応能力を学ぶ。
2つのデータセットで他の最先端のメソッドよりも優れています。
論文 参考訳(メタデータ) (2021-03-24T05:02:18Z) - Efficient Learning of Control Policies for Robust Quadruped Bounding
using Pretrained Neural Networks [15.09037992110481]
境界は, 交渉上の障害に対して, 四足歩行において重要な局面の1つである。
著者らはロバストなバウンディングゲイトをより効率的に学習できる効果的なアプローチを提案した。
著者らは、Jueying Miniの四足歩行ロボットが不均一な地形に接することによる、効率的な計算と良好な移動結果を示す。
論文 参考訳(メタデータ) (2020-11-01T08:06:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。