論文の概要: A Survey of Machine Learning-based Physical-Layer Authentication in Wireless Communications
- arxiv url: http://arxiv.org/abs/2411.09906v1
- Date: Fri, 15 Nov 2024 03:01:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:52.863569
- Title: A Survey of Machine Learning-based Physical-Layer Authentication in Wireless Communications
- Title(参考訳): 無線通信における機械学習に基づく物理層認証に関する調査
- Authors: Rui Meng, Bingxuan Xu, Xiaodong Xu, Mengying Sun, Bizhu Wanga, Shujun Han, Suyu Lv, Ping Zhang,
- Abstract要約: 無線環境におけるユニークな特性の活用により,Physical-Layer Authentication (PLA) が有望な補完として浮上している。
本稿では,MLベースのPLAで使用可能な特徴と技術について,包括的に調査する。
- 参考スコア(独自算出の注目度): 17.707450193500698
- License:
- Abstract: To ensure secure and reliable communication in wireless systems, authenticating the identities of numerous nodes is imperative. Traditional cryptography-based authentication methods suffer from issues such as low compatibility, reliability, and high complexity. Physical-Layer Authentication (PLA) is emerging as a promising complement due to its exploitation of unique properties in wireless environments. Recently, Machine Learning (ML)-based PLA has gained attention for its intelligence, adaptability, universality, and scalability compared to non-ML approaches. However, a comprehensive overview of state-of-the-art ML-based PLA and its foundational aspects is lacking. This paper presents a comprehensive survey of characteristics and technologies that can be used in the ML-based PLA. We categorize existing ML-based PLA schemes into two main types: multi-device identification and attack detection schemes. In deep learning-based multi-device identification schemes, Deep Neural Networks are employed to train models, avoiding complex processing and expert feature transformation. Deep learning-based multi-device identification schemes are further subdivided, with schemes based on Convolutional Neural Networks being extensively researched. In ML-based attack detection schemes, receivers utilize intelligent ML techniques to set detection thresholds automatically, eliminating the need for manual calculation or knowledge of channel models. ML-based attack detection schemes are categorized into three sub-types: Supervised Learning, Unsupervised Learning, and Reinforcement Learning. Additionally, we summarize open-source datasets used for PLA, encompassing Radio Frequency fingerprints and channel fingerprints. Finally, this paper outlines future research directions to guide researchers in related fields.
- Abstract(参考訳): 無線システムにおけるセキュアで信頼性の高い通信を確保するためには、多数のノードの識別が不可欠である。
従来の暗号ベースの認証手法は、低互換性、信頼性、高複雑性といった問題に悩まされている。
無線環境におけるユニークな特性の活用により,Physical-Layer Authentication (PLA) が有望な補完として浮上している。
最近、機械学習(ML)ベースのPLAは、非MLアプローチと比較して、その知性、適応性、普遍性、スケーラビリティに注目を集めている。
しかし、最先端のMLベースのPLAとその基礎的な側面の包括的概要は欠落している。
本稿では,MLベースのPLAで使用可能な特徴と技術について,包括的に調査する。
既存のMLベースのPLAスキームを、マルチデバイス識別と攻撃検出スキームの2つの主要なタイプに分類する。
ディープラーニングベースのマルチデバイス識別スキームでは、Deep Neural Networksがモデルをトレーニングするために使われ、複雑な処理や専門家の機能変換を避けている。
ディープラーニングに基づくマルチデバイス識別スキームはさらに細分化され、畳み込みニューラルネットワークに基づくスキームが広く研究されている。
MLベースの攻撃検出スキームでは、受信機はインテリジェントML技術を使用して検出しきい値を自動的に設定し、手動計算やチャネルモデルの知識を不要にする。
MLベースの攻撃検出スキームは、監視学習、教師なし学習、強化学習の3つのサブタイプに分類される。
さらに、PLAで使用されるオープンソースのデータセットを要約し、Radio Frequencyの指紋とチャネルの指紋を含む。
最後に,今後の研究の方向性について概説する。
関連論文リスト
- netFound: Foundation Model for Network Security [11.38388749887112]
本稿では,新しいトランスフォーマーベースネットワーク基盤モデルであるnetFoundを紹介する。
我々は、事前学習のために、豊富なラベルのないネットワークテレメトリデータに自己教師付き学習技術を採用する。
実運用環境では,netFoundが隠れたネットワークコンテキストを効果的にキャプチャすることを示す。
論文 参考訳(メタデータ) (2023-10-25T22:04:57Z) - A Comparative Analysis of Machine Learning Algorithms for Intrusion
Detection in Edge-Enabled IoT Networks [0.0]
侵入検知は、ネットワークセキュリティの分野で難しい問題の一つである。
本稿では,従来の機械学習分類アルゴリズムの比較分析を行った。
MLP(Multi-Layer Perception)は入力と出力の間に依存性があり、侵入検知のネットワーク構成に依存している。
論文 参考訳(メタデータ) (2021-11-02T05:58:07Z) - Learning-Based UE Classification in Millimeter-Wave Cellular Systems
With Mobility [67.81523988596841]
ミリ波携帯電話通信では、送信機と受信機のビームのアライメントを可能にするビームフォーミング手順が必要である。
効率的なビームトラッキングでは、トラフィックと移動パターンに応じてユーザーを分類することが有利である。
これまでの研究は、機械学習に基づくUE分類の効率的な方法を示してきた。
論文 参考訳(メタデータ) (2021-09-13T12:00:45Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
侵入検知システムは、スマートデバイスのセキュリティとプライバシを確保する上で重要な役割を果たす。
本稿では,侵入検知システムにおけるFLの使用について,広範囲かつ徹底的に検討することを目的とする。
論文 参考訳(メタデータ) (2021-06-16T13:13:04Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
機械学習(ML)ベースのネットワーク侵入検知システムは、組織のセキュリティ姿勢を高める多くの利点をもたらす。
多くのシステムは研究コミュニティで設計・開発されており、特定のデータセットを用いて評価すると、しばしば完璧な検出率を達成する。
本稿では,異なるネットワーク環境と攻撃タイプに設定した共通機能の汎用性を評価することにより,ギャップを狭める。
論文 参考訳(メタデータ) (2021-04-15T00:44:45Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
フェデレーションラーニングは、データを明示的に交換することなく、ローカルデータセットを保持する複数のエッジデバイスでモデルをトレーニングするための新しい機械学習パラダイムです。
本稿では、信号処理ツールを用いて扱うのが自然である主な課題をカプセル化し、強調する、連合学習のための統一的な体系的フレームワークを提供する。
論文 参考訳(メタデータ) (2021-03-31T15:14:39Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
プレゼンテーションアタックは、バイオメトリックなモダリティの大部分に大きな課題をもたらす。
本稿では,汎用的な深層学習に基づくプレゼンテーション攻撃検出ネットワークであるMVANetを提案する。
これはハイブリッドアルゴリズムの単純さと成功、あるいは複数の検出ネットワークの融合にインスパイアされている。
論文 参考訳(メタデータ) (2020-10-25T22:42:27Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
本稿では,侵入検出問題に適用したニューラルネットワーク手法の実験的検討を行う。
私たちは、ディープベースアプローチやウェイトレスニューラルネットワークを含む、侵入検出に関連する最も顕著なニューラルネットワークベースのテクニックの完全なビューを提供します。
我々の評価は、特に最先端のデータセットを使用してモデルのトレーニングを行う場合、ニューラルネットワークの価値を定量化する。
論文 参考訳(メタデータ) (2020-09-18T18:32:24Z) - Wireless for Machine Learning [91.13476340719087]
我々は、分散データセット上で機械学習サービスをサポートするように設計された最先端のワイヤレス手法について、徹底的にレビューする。
文献にはアナログ・オーバー・ザ・エア計算とMLに最適化されたデジタル無線リソース管理という2つの明確なテーマがある。
このサーベイは、これらのメソッドを包括的に紹介し、最も重要な研究をレビューし、オープンな問題を強調し、アプリケーションのシナリオについて議論する。
論文 参考訳(メタデータ) (2020-08-31T11:09:49Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
フェデレートラーニング(Federated Learning)は、データを収集するノード間で処理能力を活用することによって、ネットワークエッジでMLモデルをトレーニングするテクニックとして登場した。
我々は、エッジデバイスからクラウドサーバへのノード連続体にMLモデルのトレーニングをインテリジェントに分散する、フォグラーニングと呼ばれる新しい学習パラダイムを提唱する。
論文 参考訳(メタデータ) (2020-06-07T05:11:18Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。