Quadratic versus Polynomial Unconstrained Binary Models for Quantum Optimization illustrated on Railway Timetabling
- URL: http://arxiv.org/abs/2411.10062v1
- Date: Fri, 15 Nov 2024 09:23:52 GMT
- Title: Quadratic versus Polynomial Unconstrained Binary Models for Quantum Optimization illustrated on Railway Timetabling
- Authors: Camille Grange, Marion Lavignac, Valentina Pozzoli, Eric Bourreau,
- Abstract summary: We present a generic method to reformulate any problem into a Polynomial Unconstrained Binary Optimization (PUBO) problem.
We also provide a generic reformulation into a Quadratic Unconstrained Binary Optimization (QUBO) problem.
Our results illustrate that the PUBO reformulation outperforms the QUBO one for the problem at hand.
- Score: 0.0
- License:
- Abstract: Quantum Approximate Optimization Algorithm (QAOA) is one of the most short-term promising quantum-classical algorithm to solve unconstrained combinatorial optimization problems. It alternates between the execution of a parametrized quantum circuit and a classical optimization. There are numerous levers for enhancing QAOA performances, such as the choice of quantum circuit meta-parameters or the choice of the classical optimizer. In this paper, we stress on the importance of the input problem formulation by illustrating it with the resolution of an industrial railway timetabling problem. Specifically, we present a generic method to reformulate any polynomial problem into a Polynomial Unconstrained Binary Optimization (PUBO) problem, with a specific formulation imposing penalty terms to take binary values when the constraints are linear. We also provide a generic reformulation into a Quadratic Unconstrained Binary Optimization (QUBO) problem. We then conduct a numerical comparison between the PUBO with binary penalty terms and the QUBO formulations proposed on a railway timetabling problem solved with QAOA. Our results illustrate that the PUBO reformulation outperforms the QUBO one for the problem at hand.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - A Hybrid Quantum-Classical Approach to the Electric Mobility Problem [0.8796261172196743]
We suggest a hybrid quantum-classical routine for the NP-hard Electric Vehicle Fleet Charging and Allocation Problem.
We benchmark the performance of the decomposition technique with classical and quantum-inspired metaheuristics.
The major advantage of the proposed approach is that it enables quantum-based methods for this realistic problem with many inequality constraints.
arXiv Detail & Related papers (2023-10-04T12:14:56Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - How to Approximate any Objective Function via Quadratic Unconstrained
Binary Optimization [11.095381943951539]
We present a toolkit of methods to transform almost arbitrary problems to Quadratic unconstrained binary optimization (QUBO)
We showcase the usage of our approaches on two example problems (ratio cut and logistic regression)
arXiv Detail & Related papers (2022-04-23T09:43:06Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linear iterations problems on quantum computers.
arXiv Detail & Related papers (2022-03-23T18:00:03Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Modeling Linear Inequality Constraints in Quadratic Binary Optimization
for Variational Quantum Eigensolver [0.0]
This paper introduces the use of tailored variational forms for variational quantum eigensolver.
Four constraints that usually appear in several optimization problems are modeled.
The main advantage of the proposed methodology is that the number of parameters on the variational form remain constant.
arXiv Detail & Related papers (2020-07-26T23:36:22Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.