Adaptive Physics-Guided Neural Network
- URL: http://arxiv.org/abs/2411.10064v1
- Date: Fri, 15 Nov 2024 09:28:55 GMT
- Title: Adaptive Physics-Guided Neural Network
- Authors: David Shulman, Itai Dattner,
- Abstract summary: This paper introduces an adaptive physics-guided neural network (APGNN) framework for predicting quality attributes from image data.
The APGNN adaptively balances data-driven and physics-informed predictions, enhancing model accuracy and robustness across different environments.
In real-world experiments, the APGNN consistently demonstrated superior performance in the diverse thermal image dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces an adaptive physics-guided neural network (APGNN) framework for predicting quality attributes from image data by integrating physical laws into deep learning models. The APGNN adaptively balances data-driven and physics-informed predictions, enhancing model accuracy and robustness across different environments. Our approach is evaluated on both synthetic and real-world datasets, with comparisons to conventional data-driven models such as ResNet. For the synthetic data, 2D domains were generated using three distinct governing equations: the diffusion equation, the advection-diffusion equation, and the Poisson equation. Non-linear transformations were applied to these domains to emulate complex physical processes in image form. In real-world experiments, the APGNN consistently demonstrated superior performance in the diverse thermal image dataset. On the cucumber dataset, characterized by low material diversity and controlled conditions, APGNN and PGNN showed similar performance, both outperforming the data-driven ResNet. However, in the more complex thermal dataset, particularly for outdoor materials with higher environmental variability, APGNN outperformed both PGNN and ResNet by dynamically adjusting its reliance on physics-based versus data-driven insights. This adaptability allowed APGNN to maintain robust performance across structured, low-variability settings and more heterogeneous scenarios. These findings underscore the potential of adaptive physics-guided learning to integrate physical constraints effectively, even in challenging real-world contexts with diverse environmental conditions.
Related papers
- Instruction-Guided Autoregressive Neural Network Parameter Generation [49.800239140036496]
We propose IGPG, an autoregressive framework that unifies parameter synthesis across diverse tasks and architectures.
By autoregressively generating neural network weights' tokens, IGPG ensures inter-layer coherence and enables efficient adaptation across models and datasets.
Experiments on multiple datasets demonstrate that IGPG consolidates diverse pretrained models into a single, flexible generative framework.
arXiv Detail & Related papers (2025-04-02T05:50:19Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.
Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.
Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Dynami-CAL GraphNet: A Physics-Informed Graph Neural Network Conserving Linear and Angular Momentum for Dynamical Systems [7.59660604072964]
Dynami-CAL GraphNet offers accurate, interpretable, and real-time modeling of complex multi-body dynamical systems.
It provides physically consistent and scalable predictions that adhere to fundamental conservation laws.
It enables the inference of forces and moments while efficiently handling heterogeneous interactions and external forces.
arXiv Detail & Related papers (2025-01-13T14:41:56Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.
The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.
Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
This study presents a novel hybrid approach that combines Graph Neural Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equations.
The results demonstrate significant improvements in the accuracy of the reconstructed mean flow compared to purely data-driven models.
arXiv Detail & Related papers (2024-11-14T14:31:52Z) - Recurrent neural networks and transfer learning for elasto-plasticity in
woven composites [0.0]
This article presents Recurrent Neural Network (RNN) models as a surrogate for computationally intensive meso-scale simulation of woven composites.
A mean-field model generates a comprehensive data set representing elasto-plastic behavior.
In simulations, arbitrary six-dimensional strain histories are used to predict stresses under random walking as the source task and cyclic loading conditions as the target task.
arXiv Detail & Related papers (2023-11-22T14:47:54Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Physics-informed UNets for Discovering Hidden Elasticity in
Heterogeneous Materials [0.0]
We develop a novel UNet-based neural network model for inversion in elasticity (El-UNet)
We show superior performance, both in terms of accuracy and computational cost, by El-UNet compared to fully-connected physics-informed neural networks.
arXiv Detail & Related papers (2023-06-01T23:35:03Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
We propose PINNs for the calibration of models from full-field displacement and global force data in a realistic regime.
We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data.
arXiv Detail & Related papers (2022-12-15T11:01:32Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - coVariance Neural Networks [119.45320143101381]
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning.
We propose a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs.
We show that VNN performance is indeed more stable than PCA-based statistical approaches.
arXiv Detail & Related papers (2022-05-31T15:04:43Z) - Thermodynamically Consistent Machine-Learned Internal State Variable
Approach for Data-Driven Modeling of Path-Dependent Materials [0.76146285961466]
Data-driven machine learning models, such as deep neural networks and recurrent neural networks (RNNs), have become viable alternatives.
This study proposes a machine-learned data robustness-driven modeling approach for path-dependent materials based on the measurable material.
arXiv Detail & Related papers (2022-05-01T23:25:08Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.