Dynami-CAL GraphNet: A Physics-Informed Graph Neural Network Conserving Linear and Angular Momentum for Dynamical Systems
- URL: http://arxiv.org/abs/2501.07373v1
- Date: Mon, 13 Jan 2025 14:41:56 GMT
- Title: Dynami-CAL GraphNet: A Physics-Informed Graph Neural Network Conserving Linear and Angular Momentum for Dynamical Systems
- Authors: Vinay Sharma, Olga Fink,
- Abstract summary: Dynami-CAL GraphNet offers accurate, interpretable, and real-time modeling of complex multi-body dynamical systems.
It provides physically consistent and scalable predictions that adhere to fundamental conservation laws.
It enables the inference of forces and moments while efficiently handling heterogeneous interactions and external forces.
- Score: 7.59660604072964
- License:
- Abstract: Accurate, interpretable, and real-time modeling of multi-body dynamical systems is essential for predicting behaviors and inferring physical properties in natural and engineered environments. Traditional physics-based models face scalability challenges and are computationally demanding, while data-driven approaches like Graph Neural Networks (GNNs) often lack physical consistency, interpretability, and generalization. In this paper, we propose Dynami-CAL GraphNet, a Physics-Informed Graph Neural Network that integrates the learning capabilities of GNNs with physics-based inductive biases to address these limitations. Dynami-CAL GraphNet enforces pairwise conservation of linear and angular momentum for interacting nodes using edge-local reference frames that are equivariant to rotational symmetries, invariant to translations, and equivariant to node permutations. This design ensures physically consistent predictions of node dynamics while offering interpretable, edge-wise linear and angular impulses resulting from pairwise interactions. Evaluated on a 3D granular system with inelastic collisions, Dynami-CAL GraphNet demonstrates stable error accumulation over extended rollouts, effective extrapolations to unseen configurations, and robust handling of heterogeneous interactions and external forces. Dynami-CAL GraphNet offers significant advantages in fields requiring accurate, interpretable, and real-time modeling of complex multi-body dynamical systems, such as robotics, aerospace engineering, and materials science. By providing physically consistent and scalable predictions that adhere to fundamental conservation laws, it enables the inference of forces and moments while efficiently handling heterogeneous interactions and external forces.
Related papers
- SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
This paper focuses on representation learning for dynamic graphs with temporal interactions.
We propose a generic differential model for dynamic graphs that characterises the continuously dynamic evolution of node embedding trajectories.
Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without integration by segments.
arXiv Detail & Related papers (2023-02-22T12:59:38Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z) - Continuous-Depth Neural Models for Dynamic Graph Prediction [16.89981677708299]
We introduce the framework of continuous-depth graph neural networks (GNNs)
Neural graph differential equations (Neural GDEs) are formalized as the counterpart to GNNs.
Results prove the effectiveness of the proposed models across applications, such as traffic forecasting or prediction in genetic regulatory networks.
arXiv Detail & Related papers (2021-06-22T07:30:35Z) - Unsupervised Learning of Lagrangian Dynamics from Images for Prediction
and Control [12.691047660244335]
We introduce a new unsupervised neural network model that learns Lagrangian dynamics from images.
The model infers Lagrangian dynamics on generalized coordinates that are simultaneously learned with a coordinate-aware variational autoencoder.
arXiv Detail & Related papers (2020-07-03T20:06:43Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Tensor network approaches for learning non-linear dynamical laws [0.0]
We show that various physical constraints can be captured via tensor network based parameterizations for the governing equation.
We provide a physics-informed approach to recovering structured dynamical laws from data, which adaptively balances the need for expressivity and scalability.
arXiv Detail & Related papers (2020-02-27T19:02:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.