Layer Importance and Hallucination Analysis in Large Language Models via Enhanced Activation Variance-Sparsity
- URL: http://arxiv.org/abs/2411.10069v1
- Date: Fri, 15 Nov 2024 09:33:47 GMT
- Title: Layer Importance and Hallucination Analysis in Large Language Models via Enhanced Activation Variance-Sparsity
- Authors: Zichen Song, Sitan Huang, Yuxin Wu, Zhongfeng Kang,
- Abstract summary: This paper first explores layer importance using the Activation Variance-Sparsity Score (AVSS)
Building on AVSS, we propose an enhanced version tailored to assess hallucination propensity across layers (EAVSS)
This improved approach introduces Hallucination-Specific Activation Variance (HSAV) and Hallucination-Specific Sparsity (HSS) metrics, allowing precise identification of hallucination-prone layers.
- Score: 5.854247492297834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating the importance of different layers in large language models (LLMs) is crucial for optimizing model performance and interpretability. This paper first explores layer importance using the Activation Variance-Sparsity Score (AVSS), which combines normalized activation variance and sparsity to quantify each layer's contribution to overall model performance. By ranking layers based on AVSS and pruning the least impactful 25\%, our experiments on tasks such as question answering, language modeling, and sentiment classification show that over 90\% of the original performance is retained, highlighting potential redundancies in LLM architectures. Building on AVSS, we propose an enhanced version tailored to assess hallucination propensity across layers (EAVSS). This improved approach introduces Hallucination-Specific Activation Variance (HSAV) and Hallucination-Specific Sparsity (HSS) metrics, allowing precise identification of hallucination-prone layers. By incorporating contrastive learning on these layers, we effectively mitigate hallucination generation, contributing to more robust and efficient LLMs(The maximum performance improvement is 12\%). Our results on the NQ, SciQ, TriviaQA, TruthfulQA, and WikiQA datasets demonstrate the efficacy of this method, offering a comprehensive framework for both layer importance evaluation and hallucination mitigation in LLMs.
Related papers
- Layer-Aware Embedding Fusion for LLMs in Text Classifications [1.4250487522292254]
We propose a layer-aware embedding selection method and investigate how to quantitatively evaluate different layers to identify the most important ones for downstream NLP tasks.
Experiments on four English text classification datasets demonstrate that different layers in LLMs exhibit varying degrees of representational strength for classification.
We also explore how combining embeddings from multiple LLMs, without requiring model fine-tuning, can improve performance.
arXiv Detail & Related papers (2025-04-08T07:45:50Z) - Integration of Explainable AI Techniques with Large Language Models for Enhanced Interpretability for Sentiment Analysis [0.5120567378386615]
Interpretability remains a key difficulty in sentiment analysis with Large Language Models (LLMs)
This research introduces a technique that applies SHAP (Shapley Additive Explanations) by breaking down LLMs into components such as embedding layer,encoder,decoder and attention layer.
The method is evaluated using the Stanford Sentiment Treebank (SST-2) dataset, which shows how different sentences affect different layers.
arXiv Detail & Related papers (2025-03-15T01:37:54Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Learn from Downstream and Be Yourself in Multimodal Large Language Model Fine-Tuning [104.27224674122313]
Fine-tuning MLLM has become a common practice to improve performance on specific downstream tasks.
To balance the trade-off between generalization and specialization, we propose measuring the parameter importance for both pre-trained and fine-tuning distributions.
arXiv Detail & Related papers (2024-11-17T01:16:37Z) - AVSS: Layer Importance Evaluation in Large Language Models via Activation Variance-Sparsity Analysis [5.854247492297834]
We propose a novel metric combining normalized activation variance and sparsity to assess each layer's contribution to model performance.
By identifying and removing approximately the lowest 25% of layers based on AVSS, we achieve over 90% of original model performance.
arXiv Detail & Related papers (2024-11-04T14:29:49Z) - Understanding Layer Significance in LLM Alignment [23.582520695083588]
We propose identifying which layers within large language models are most critical to the alignment process.
Experimental results reveal that, despite substantial differences in alignment datasets, the important layers of a model exhibit nearly 90% overlap.
The results also indicate that freezing non-essential layers improves overall model performance, while selectively tuning the most critical layers significantly enhances fine-tuning efficiency with minimal performance loss.
arXiv Detail & Related papers (2024-10-23T13:47:05Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
arXiv Detail & Related papers (2024-10-16T00:15:40Z) - Investigating Layer Importance in Large Language Models [28.156622049937216]
Large language models (LLMs) have gained increasing attention due to their prominent ability to understand and process texts.
The lack of understanding of LLMs has obstructed the deployment in safety-critical scenarios and hindered the development of better models.
This study identifies cornerstone layers in LLMs and underscores their critical role for future research.
arXiv Detail & Related papers (2024-09-22T09:53:13Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraph is a model-based white-box detection and forecasting approach for large language models.
We show that hallucination can be effectively detected by analyzing the LLM's internal state transition dynamics.
Our work paves a new way for model-based white-box analysis of LLMs, motivating the research community to further explore, understand, and refine the intricate dynamics of LLM behaviors.
arXiv Detail & Related papers (2024-04-06T20:02:20Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks.
However, their large size makes their inference slow and computationally expensive.
We show that it enables these layers to acquire 'good' generation ability without affecting the generation ability of the final layer.
arXiv Detail & Related papers (2023-10-28T04:07:58Z) - Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity [88.62935593360162]
Large Language Models (LLMs) are renowned for their remarkable performance across diverse domains.
We introduce a novel LLM pruning methodology that incorporates a tailored set of non-uniform layerwise sparsity ratios, termed as Outlier Weighed Layerwise sparsity (OWL)
OWL exhibits a remarkable performance gain, surpassing the state-of-the-art Wanda and SparseGPT by 61.22 and 6.80 perplexity at a high sparsity level of 70%, respectively.
arXiv Detail & Related papers (2023-10-08T14:22:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.