Understanding Layer Significance in LLM Alignment
- URL: http://arxiv.org/abs/2410.17875v3
- Date: Tue, 08 Apr 2025 09:44:28 GMT
- Title: Understanding Layer Significance in LLM Alignment
- Authors: Guangyuan Shi, Zexin Lu, Xiaoyu Dong, Wenlong Zhang, Xuanyu Zhang, Yujie Feng, Xiao-Ming Wu,
- Abstract summary: We propose identifying which layers within large language models are most critical to the alignment process.<n> Experimental results reveal that, despite substantial differences in alignment datasets, the important layers of a model exhibit nearly 90% overlap.<n>The results also indicate that freezing non-essential layers improves overall model performance, while selectively tuning the most critical layers significantly enhances fine-tuning efficiency with minimal performance loss.
- Score: 23.582520695083588
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Aligning large language models (LLMs) through supervised fine-tuning is essential for tailoring them to specific applications. Recent studies suggest that alignment primarily adjusts a model's presentation style rather than its foundational knowledge, indicating that only certain components of the model are significantly impacted. To uncover how alignment affects model behavior at a granular level, we propose identifying which layers within LLMs are most critical to the alignment process. Our approach, named ILA, involves learning a binary mask for the parameter changes in each layer during alignment, as an indicator of layer significance. Experimental results reveal that, despite substantial differences in alignment datasets, the important layers of a model identified by ILA exhibit nearly 90\% overlap, highlighting fundamental patterns in LLM alignment. The results also indicate that freezing non-essential layers improves overall model performance, while selectively tuning the most critical layers significantly enhances fine-tuning efficiency with minimal performance loss. Finally, we discuss how these findings extend from LLM alignment to reasoning.
Related papers
- Enhancing LLM Robustness to Perturbed Instructions: An Empirical Study [8.827173113748701]
We study character- and word-level edits of task-specific instructions, which substantially degrade downstream performance.
We find that, on average, self-denoising achieves substantially higher performance gains than alternative strategies.
arXiv Detail & Related papers (2025-04-03T16:17:56Z) - Exploring Model Editing for LLM-based Aspect-Based Sentiment Classification [17.512415475301395]
We investigate model editing to serve an efficient method for adapting large language models (LLMs) to solve aspect-based sentiment classification.
Our findings reveal that a distinct set of mid-layer representations is essential for detecting the sentiment polarity of given aspect words.
We develop a model editing approach that focuses exclusively on these critical parts of the LLM, leading to a more efficient method for adapting LLMs.
arXiv Detail & Related papers (2025-03-19T11:21:37Z) - Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
We show that fine-tuning with LLM-generated data improves target task performance and reduces out-of-domain degradation.
This is the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - Learn from Downstream and Be Yourself in Multimodal Large Language Model Fine-Tuning [104.27224674122313]
Fine-tuning MLLM has become a common practice to improve performance on specific downstream tasks.
To balance the trade-off between generalization and specialization, we propose measuring the parameter importance for both pre-trained and fine-tuning distributions.
arXiv Detail & Related papers (2024-11-17T01:16:37Z) - Exploring the Alignment Landscape: LLMs and Geometric Deep Models in Protein Representation [57.59506688299817]
Latent representation alignment is used to map embeddings from different modalities into a shared space, often aligned with the embedding space of large language models (LLMs)
Preliminary protein-focused large language models (MLLMs) have emerged, but they have predominantly relied on approaches lacking a fundamental understanding of optimal alignment practices across representations.
In this study, we explore the alignment of multimodal representations between LLMs and Geometric Deep Models (GDMs) in the protein domain.
Our work examines alignment factors from both model and protein perspectives, identifying challenges in current alignment methodologies and proposing strategies to improve the alignment process.
arXiv Detail & Related papers (2024-11-08T04:15:08Z) - CogSteer: Cognition-Inspired Selective Layer Intervention for Efficiently Steering Large Language Models [37.476241509187304]
Large Language Models (LLMs) achieve remarkable performance through pretraining on extensive data.
The lack of interpretability in their underlying mechanisms limits the ability to effectively steer LLMs for specific applications.
In this work, we investigate the mechanisms of LLMs from a cognitive perspective using eye movement measures.
arXiv Detail & Related papers (2024-10-23T09:40:15Z) - Empirical Insights on Fine-Tuning Large Language Models for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.
We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.
Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - Investigating Layer Importance in Large Language Models [28.156622049937216]
Large language models (LLMs) have gained increasing attention due to their prominent ability to understand and process texts.
The lack of understanding of LLMs has obstructed the deployment in safety-critical scenarios and hindered the development of better models.
This study identifies cornerstone layers in LLMs and underscores their critical role for future research.
arXiv Detail & Related papers (2024-09-22T09:53:13Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Understanding Alignment in Multimodal LLMs: A Comprehensive Study [46.33812471516309]
We analyze each aspect of preference alignment in Multimodal Large Language Models (MLLMs)
We show that combining offline and online methods can improve the performance of the model in certain scenarios.
We introduce a novel way of creating multimodal preference data called Bias-Driven Hallucination Sampling (BDHS)
arXiv Detail & Related papers (2024-07-02T17:55:03Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
We investigate whether fine-tuning affects the intrinsic generalization ability intrinsic to Large Language Models (LLMs)
Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.
We observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model's generalization ability.
arXiv Detail & Related papers (2024-03-14T08:18:59Z) - Identifying Factual Inconsistencies in Summaries: Grounding LLM Inference via Task Taxonomy [48.29181662640212]
Factual inconsistencies pose a significant hurdle for the faithful summarization by generative models.
We consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs.
arXiv Detail & Related papers (2024-02-20T08:41:23Z) - Why Lift so Heavy? Slimming Large Language Models by Cutting Off the
Layers [2.1165011830664673]
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks.
The sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking.
We show that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks.
arXiv Detail & Related papers (2024-02-18T20:47:10Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context
Learning [61.68787689234622]
A recent study, LIMA, shows that using merely 1K examples for alignment tuning can achieve significant alignment performance as well.
This raises questions about how exactly the alignment tuning transforms a base LLM.
We show that the gap between tuning-free and tuning-based alignment methods can be significantly reduced through strategic prompting.
arXiv Detail & Related papers (2023-12-04T00:46:11Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.