論文の概要: Real-Time AI-Driven People Tracking and Counting Using Overhead Cameras
- arxiv url: http://arxiv.org/abs/2411.10072v1
- Date: Fri, 15 Nov 2024 09:37:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:39:14.131845
- Title: Real-Time AI-Driven People Tracking and Counting Using Overhead Cameras
- Title(参考訳): オーバーヘッドカメラを用いたリアルタイムAI駆動の人物追跡と計数
- Authors: Ishrath Ahamed, Chamith Dilshan Ranathunga, Dinuka Sandun Udayantha, Benny Kai Kiat Ng, Chau Yuen,
- Abstract要約: 本研究では,新しい物体追跡アルゴリズム,新しい計数アルゴリズム,微調整対象検出モデルを組み合わせた新しい手法を提案する。
低消費電力エッジコンピュータ上でのフレームレート20~27FPSでリアルタイムに97%の精度を実現する。
- 参考スコア(独自算出の注目度): 12.04532778397946
- License:
- Abstract: Accurate people counting in smart buildings and intelligent transportation systems is crucial for energy management, safety protocols, and resource allocation. This is especially critical during emergencies, where precise occupant counts are vital for safe evacuation. Existing methods struggle with large crowds, often losing accuracy with even a few additional people. To address this limitation, this study proposes a novel approach combining a new object tracking algorithm, a novel counting algorithm, and a fine-tuned object detection model. This method achieves 97% accuracy in real-time people counting with a frame rate of 20-27 FPS on a low-power edge computer.
- Abstract(参考訳): スマートな建物やインテリジェントな交通システムに数えられる正確な人は、エネルギー管理、安全プロトコル、資源配分に不可欠である。
これは緊急時に特に重要であり、正確な収容人数が安全な避難に不可欠である。
既存の手法は、大群衆と苦戦し、しばしば数人追加しても精度が低下する。
そこで本研究では,新しい対象追跡アルゴリズム,新しいカウントアルゴリズム,微調整対象検出モデルを組み合わせた新しい手法を提案する。
低消費電力エッジコンピュータ上でのフレームレート20~27FPSでリアルタイムに97%の精度を実現する。
関連論文リスト
- CORT: Class-Oriented Real-time Tracking for Embedded Systems [46.3107850275261]
本研究は,マルチクラスオブジェクトトラッキングに対する新しいアプローチを提案する。
トラッキング性能をペナルティ化することなく、より小さく予測可能な実行時間を実現することができる。
提案手法は,異なるタイプの複数の対象を持つ複雑な都市シナリオにおいて評価された。
論文 参考訳(メタデータ) (2024-07-20T09:12:17Z) - oTTC: Object Time-to-Contact for Motion Estimation in Autonomous Driving [4.707950656037167]
自律運転システムは衝突を避け安全に運転するために 物体検出に大きく依存している
モノクロ3Dオブジェクト検出器は、カメラ画像から3D境界ボックスと物体速度を直接予測することでこの問題を解決しようとする。
最近の研究では、ピクセルごとの時間対接触を推定し、速度と深さの組み合わせよりも効果的に測定できることが示唆されている。
オブジェクト検出モデルを拡張したオブジェクトごとの時間対接触推定を提案し,各オブジェクトの時間対接触属性を付加的に予測する。
論文 参考訳(メタデータ) (2024-05-13T12:34:18Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
複数の物体追跡は、自律運転において重要な課題である。
トラッキングの精度が向上するにつれて、ニューラルネットワークはますます複雑になり、レイテンシが高いため、実際の運転シナリオにおける実践的な応用に課題が生じる。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法を用いて追跡のための効率的なアーキテクチャを探索し,比較的高い精度を維持しつつ,低リアルタイム遅延を実現することを目的とした。
論文 参考訳(メタデータ) (2024-03-23T04:18:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Real-time Multi-Object Tracking Based on Bi-directional Matching [0.0]
本研究では,多目的追跡のための双方向マッチングアルゴリズムを提案する。
ストランド領域はマッチングアルゴリズムで使われ、追跡できないオブジェクトを一時的に保存する。
MOT17チャレンジでは、提案アルゴリズムは63.4%のMOTA、55.3%のIDF1、20.1のFPS追跡速度を達成した。
論文 参考訳(メタデータ) (2023-03-15T08:38:08Z) - DOTIE -- Detecting Objects through Temporal Isolation of Events using a
Spiking Architecture [5.340730281227837]
視覚に基づく自律ナビゲーションシステムは障害物を避けるために高速で正確な物体検出アルゴリズムに依存している。
本研究では,イベントに固有の時間的情報を用いて移動物体を効率的に検出する手法を提案する。
我々のアーキテクチャを利用することで、自律ナビゲーションシステムは、オブジェクト検出を行うための最小のレイテンシとエネルギーオーバーヘッドを持つことが示される。
論文 参考訳(メタデータ) (2022-10-03T14:43:11Z) - E^2TAD: An Energy-Efficient Tracking-based Action Detector [78.90585878925545]
本稿では,事前定義されたキーアクションを高精度かつ効率的にローカライズするためのトラッキングベースソリューションを提案する。
UAV-Video Track of 2021 Low-Power Computer Vision Challenge (LPCVC)で優勝した。
論文 参考訳(メタデータ) (2022-04-09T07:52:11Z) - Single Shot Multitask Pedestrian Detection and Behavior Prediction [9.147707153504117]
カメラに基づく歩行者検出と意図予測を行うための空間時空間マルチタスキングを用いた新しいアーキテクチャを提案する。
提案手法は,全歩行者の意図を単一ショットで検出し,予測することにより,遅延を著しく低減する。
論文 参考訳(メタデータ) (2021-01-06T19:10:23Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
本稿では,ポイントレベルのアノテーションのみを用いて訓練された典型的なオブジェクト検出を可能にする,新たな自己学習手法を提案する。
トレーニング中、利用可能なポイントアノテーションを使用して、オブジェクトの中心点の推定を監督する。
実験の結果,本手法は検出タスクとカウントタスクの両方において,最先端のポイント管理手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-25T02:14:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。