Entanglement entropy dynamics of non-Gaussian states in free boson systems: random sampling approach
- URL: http://arxiv.org/abs/2411.10085v1
- Date: Fri, 15 Nov 2024 10:04:42 GMT
- Title: Entanglement entropy dynamics of non-Gaussian states in free boson systems: random sampling approach
- Authors: Ryui Kaneko, Daichi Kagamihara, Ippei Danshita,
- Abstract summary: We numerically demonstrate that a simple random sampling method reduces the computational cost of a permanent.
Although the computational cost is still exponential, this improvement allows us to obtain the entanglement entropy dynamics in free boson systems for more than $100$ sites.
- Score: 0.0
- License:
- Abstract: We develop a random sampling method for calculating the time evolution of the R\'{e}nyi entanglement entropy after a quantum quench from an insulating state in free boson systems. Because of the non-Gaussian nature of the initial state, calculating the R\'{e}nyi entanglement entropy calls for the exponential cost of computing a matrix permanent. We numerically demonstrate that a simple random sampling method reduces the computational cost of a permanent; for an $N_{\mathrm{s}}\times N_{\mathrm{s}}$ matrix corresponding to $N_{\mathrm{s}}$ sites at half filling, the sampling cost becomes $\mathcal{O}(2^{\alpha N_{\mathrm{s}}})$ with a constant $\alpha\ll 1$, in contrast to the conventional algorithm with the $\mathcal{O}(2^{N_{\mathrm{s}}})$ number of summations requiring the exponential-time cost. Although the computational cost is still exponential, this improvement allows us to obtain the entanglement entropy dynamics in free boson systems for more than $100$ sites. We present several examples of the entanglement entropy dynamics in low-dimensional free boson systems.
Related papers
- Fast-forwarding quantum algorithms for linear dissipative differential equations [2.5677613431426978]
We show that a quantum algorithm based on truncated Dyson series can prepare history states of dissipative ODEs up to time $T$ with cost $widetildemathcalO(log(T) (log (1/epsilon))2 )$.
As applications, we show that quantum algorithms can simulate dissipative non-Hermitian quantum dynamics and heat process with fast-forwarded complexity sub-linear in time.
arXiv Detail & Related papers (2024-10-17T03:33:47Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Fast Rates for Maximum Entropy Exploration [52.946307632704645]
We address the challenge of exploration in reinforcement learning (RL) when the agent operates in an unknown environment with sparse or no rewards.
We study the maximum entropy exploration problem two different types.
For visitation entropy, we propose a game-theoretic algorithm that has $widetildemathcalO(H3S2A/varepsilon2)$ sample complexity.
For the trajectory entropy, we propose a simple algorithm that has a sample of complexity of order $widetildemathcalO(mathrmpoly(S,
arXiv Detail & Related papers (2023-03-14T16:51:14Z) - Unbiased random circuit compiler for time-dependent Hamiltonian
simulation [8.694056486825318]
Time-dependent Hamiltonian simulation is a critical task in quantum computing.
We develop an unbiased random compiler for TDHS.
We perform numerical simulations for a spin model under the interaction picture and the adiabatic ground state preparation for molecular systems.
arXiv Detail & Related papers (2022-12-19T13:40:05Z) - Quantum Algorithms for Sampling Log-Concave Distributions and Estimating
Normalizing Constants [8.453228628258778]
We develop quantum algorithms for sampling logconcave distributions and for estimating their normalizing constants.
We exploit quantum analogs of the Monte Carlo method and quantum walks.
We also prove a $1/epsilon1-o(1)$ quantum lower bound for estimating normalizing constants.
arXiv Detail & Related papers (2022-10-12T19:10:43Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Sublinear quantum algorithms for estimating von Neumann entropy [18.30551855632791]
We study the problem of obtaining estimates to within a multiplicative factor $gamma>1$ of the Shannon entropy of probability distributions and the von Neumann entropy of mixed quantum states.
We work with the quantum purified query access model, which can handle both classical probability distributions and mixed quantum states, and is the most general input model considered in the literature.
arXiv Detail & Related papers (2021-11-22T12:00:45Z) - Tightening the Dependence on Horizon in the Sample Complexity of
Q-Learning [59.71676469100807]
This work sharpens the sample complexity of synchronous Q-learning to an order of $frac|mathcalS|| (1-gamma)4varepsilon2$ for any $0varepsilon 1$.
Our finding unveils the effectiveness of vanilla Q-learning, which matches that of speedy Q-learning without requiring extra computation and storage.
arXiv Detail & Related papers (2021-02-12T14:22:05Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.