Randomized adiabatic quantum linear solver algorithm with optimal complexity scaling and detailed running costs
- URL: http://arxiv.org/abs/2305.11352v2
- Date: Wed, 14 May 2025 11:27:36 GMT
- Title: Randomized adiabatic quantum linear solver algorithm with optimal complexity scaling and detailed running costs
- Authors: David Jennings, Matteo Lostaglio, Sam Pallister, Andrew T Sornborger, Yiğit Subaşı,
- Abstract summary: We develop a quantum linear solver algorithm based on adiabatic quantum computing.<n>The algorithm is improved to the optimal scaling $O(kappa/log$)$ - an exponential improvement in $epsilon$.<n>We introduce a cheaper randomized walk operator method replacing Hamiltonian simulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving linear systems of equations is a fundamental problem with a wide variety of applications across many fields of science, and there is increasing effort to develop quantum linear solver algorithms. [Suba\c{s}i et al., Phys. Rev. Lett. (2019)] proposed a randomized algorithm inspired by adiabatic quantum computing, based on a sequence of random Hamiltonian simulation steps, with suboptimal scaling in the condition number $\kappa$ of the linear system and the target error $\epsilon$. Here we go beyond these results in several ways. Firstly, using filtering [Lin et al., Quantum (2019)] and Poissonization techniques [Cunningham et al., arXiv:2406.03972 (2024)], the algorithm complexity is improved to the optimal scaling $O(\kappa \log(1/\epsilon))$ - an exponential improvement in $\epsilon$, and a shaving of a $\log \kappa$ scaling factor in $\kappa$. Secondly, the algorithm is further modified to achieve constant factor improvements, which are vital as we progress towards hardware implementations on fault-tolerant devices. We introduce a cheaper randomized walk operator method replacing Hamiltonian simulation - which also removes the need for potentially challenging classical precomputations; randomized routines are sampled over optimized random variables; circuit constructions are improved. We obtain a closed formula rigorously upper bounding the expected number of times one needs to apply a block-encoding of the linear system matrix to output a quantum state encoding the solution to the linear system. The upper bound is $867 \kappa$ at $\epsilon=10^{-10}$ for Hermitian matrices.
Related papers
- A probabilistic quantum algorithm for Lyapunov equations and matrix inversion [0.0]
We present a probabilistic quantum algorithm for preparing mixed states proportional to the solutions of Lyapunov equations.<n>At each step the algorithm either returns the current state, applies a trace non-increasing completely positive map, or restarts depending on the outcomes of a biased coin flip and an ancilla measurement.<n>In its most general form, the algorithm generates mixed states which approximate matrix-valued weighted sums and integrals.
arXiv Detail & Related papers (2025-08-06T17:52:06Z) - Space-Efficient Quantum Error Reduction without log Factors [50.10645865330582]
We present a new highly simplified construction of a purifier, that can be understood as a weighted walk on a line similar to a random walk interpretation of majority voting.
Our purifier has exponentially better space complexity than the previous one, and quadratically better dependence on the soundness-completeness gap of the algorithm being purified.
arXiv Detail & Related papers (2025-02-13T12:04:39Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Fast quantum algorithm for differential equations [0.5895819801677125]
We present a quantum algorithm with numerical complexity that is polylogarithmic in $N$ but is independent of $kappa$ for a large class of PDEs.
Our algorithm generates a quantum state that enables extracting features of the solution.
arXiv Detail & Related papers (2023-06-20T18:01:07Z) - Mind the $\tilde{\mathcal{O}}$: Asymptotically Better, but Still
Impractical, Quantum Distributed Algorithms [0.0]
We present two algorithms in the Quantum CONGEST-CLIQUE model of distributed computation that succeed with high probability.
The algorithms achieve a lower round and message complexity than any known algorithms in the classical CONGEST-CLIQUE model.
An existing framework for using distributed version of Grover's search algorithm to accelerate triangle finding lies at the core of the speedup.
arXiv Detail & Related papers (2023-04-06T02:18:52Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.
Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Quantum Algorithm for Solving a Quadratic Nonlinear System of Equations [0.22940141855172036]
The complexity of our algorithm is $O(rm polylog(n/epsilon))$, which provides an exponential improvement over the optimal classical algorithm in dimension $n$.
Our algorithm exponentially accelerates the solution of QNSE and has wide applications in all kinds of nonlinear problems.
arXiv Detail & Related papers (2021-12-03T00:27:16Z) - Optimal scaling quantum linear systems solver via discrete adiabatic
theorem [0.9846257338039974]
We develop a quantum algorithm for solving linear systems that is discreteally optimal.
Compared to existing suboptimal methods, our algorithm is simpler and easier to implement.
arXiv Detail & Related papers (2021-11-16T00:21:37Z) - Improving quantum linear system solvers via a gradient descent
perspective [3.0969191504482247]
We revisit quantum linear system solvers from the perspective of convex optimization.
This leads to a considerable constant-factor iteration in the runtime.
We show how the optimal quantum linear system solver of Childs, Kothari, and Somma is related to the gradient descent algorithm.
arXiv Detail & Related papers (2021-09-09T13:16:28Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Efficient quantum algorithm for dissipative nonlinear differential
equations [1.1988695717766686]
We develop a quantum algorithm for dissipative quadratic $n$-dimensional ordinary differential equations.
Our algorithm has complexity $T2 qmathrmpoly(log T, log n, log 1/epsilon)/epsilon$, where $T$ is the evolution time, $epsilon$ is the allowed error, and $q$ measures decay of the solution.
arXiv Detail & Related papers (2020-11-06T04:27:00Z) - Enhancing the Quantum Linear Systems Algorithm using Richardson
Extrapolation [0.8057006406834467]
We present a quantum algorithm to solve systems of linear equations of the form $Amathbfx=mathbfb$.
The algorithm achieves an exponential improvement with respect to $N$ over classical methods.
arXiv Detail & Related papers (2020-09-09T18:00:09Z) - Learning nonlinear dynamical systems from a single trajectory [102.60042167341956]
We introduce algorithms for learning nonlinear dynamical systems of the form $x_t+1=sigma(Thetastarx_t)+varepsilon_t$.
We give an algorithm that recovers the weight matrix $Thetastar$ from a single trajectory with optimal sample complexity and linear running time.
arXiv Detail & Related papers (2020-04-30T10:42:48Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
We present the emphSecond-Order Conditional Gradient Sliding (SOCGS) algorithm.
The SOCGS algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations.
It is useful when the feasible region can only be accessed efficiently through a linear optimization oracle.
arXiv Detail & Related papers (2020-02-20T17:52:18Z) - High-precision quantum algorithms for partial differential equations [1.4050836886292872]
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm.
We develop quantum algorithms based on adaptive-order finite difference methods and spectral methods.
Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound.
arXiv Detail & Related papers (2020-02-18T20:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.