論文の概要: Imagine-2-Drive: Leveraging High-Fidelity World Models via Multi-Modal Diffusion Policies
- arxiv url: http://arxiv.org/abs/2411.10171v2
- Date: Sun, 09 Mar 2025 18:06:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:50:05.006348
- Title: Imagine-2-Drive: Leveraging High-Fidelity World Models via Multi-Modal Diffusion Policies
- Title(参考訳): imagine-2-Drive:マルチモーダル拡散法による高忠実度世界モデルの活用
- Authors: Anant Garg, K Madhava Krishna,
- Abstract要約: World Model-based Reinforcement Learning (WMRL)は、効率的な政策学習を可能にする。
マルチモーダル拡散型ポリシーアクタと高忠実度世界モデルを統合する新しいWMRLフレームワークであるImagine-2-Driveを提案する。
DiffDreamer内のDPAをトレーニングすることにより,オンラインインタラクションを最小限に抑えた堅牢なポリシー学習を実現する。
- 参考スコア(独自算出の注目度): 9.639797094021988
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: World Model-based Reinforcement Learning (WMRL) enables sample efficient policy learning by reducing the need for online interactions which can potentially be costly and unsafe, especially for autonomous driving. However, existing world models often suffer from low prediction fidelity and compounding one-step errors, leading to policy degradation over long horizons. Additionally, traditional RL policies, often deterministic or single Gaussian-based, fail to capture the multi-modal nature of decision-making in complex driving scenarios. To address these challenges, we propose Imagine-2-Drive, a novel WMRL framework that integrates a high-fidelity world model with a multi-modal diffusion-based policy actor. It consists of two key components: DiffDreamer, a diffusion-based world model that generates future observations simultaneously, mitigating error accumulation, and DPA (Diffusion Policy Actor), a diffusion-based policy that models diverse and multi-modal trajectory distributions. By training DPA within DiffDreamer, our method enables robust policy learning with minimal online interactions. We evaluate our method in CARLA using standard driving benchmarks and demonstrate that it outperforms prior world model baselines, improving Route Completion and Success Rate by 15% and 20% respectively.
- Abstract(参考訳): World Model-based Reinforcement Learning (WMRL)は、特に自動運転において、コストと安全性の低いオンラインインタラクションの必要性を減らすことで、効率的な政策学習を可能にする。
しかし、既存の世界モデルは予測精度が低く、一段階の誤りを複雑にしており、長い地平線上での政策の悪化につながっている。
さらに、従来のRLポリシーは、しばしば決定論的または単一ガウス的であり、複雑な運転シナリオにおける意思決定のマルチモーダルな性質を捉えていない。
これらの課題に対処するために,多モード拡散型ポリシーアクタと高忠実度世界モデルを統合する新しいWMRLフレームワークであるImagine-2-Driveを提案する。
DiffDreamerは、将来の観測を同時に生成する拡散ベースの世界モデルであり、誤り蓄積を緩和するDPA(Diffusion Policy Actor)と、多様かつ多様軌跡分布をモデル化する拡散ベースの政策である。
DiffDreamer内のDPAをトレーニングすることにより,オンラインインタラクションを最小限に抑えた堅牢なポリシー学習を実現する。
標準駆動ベンチマークを用いてCARLAにおける本手法の評価を行い、従来のモデルベースラインよりも優れ、ルート完了率と成功率をそれぞれ15%、成功率を20%向上させることを示した。
関連論文リスト
- TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient [26.675822002049372]
Deep Diffusion Policy Gradient (DDiffPG)は、マルチモーダルポリシーから学習する新しいアクター批判アルゴリズムである。
DDiffPGはマルチモーダルトレーニングバッチを形成し、モード固有のQ-ラーニングを使用して、RL目的の固有の欲求を緩和する。
さらに,本手法では,学習モードを明示的に制御するために,モード固有の埋め込みにポリシーを条件付けることができる。
論文 参考訳(メタデータ) (2024-06-02T09:32:28Z) - Policy-Guided Diffusion [30.4597043728046]
多くの現実世界の設定では、エージェントは以前の行動ポリシーによって収集されたオフラインデータセットから学ぶ必要がある。
本稿では,自己回帰的オフライン世界モデルに代わる政策誘導拡散法を提案する。
本研究では,政策誘導拡散モデルが目標分布の正規化形態をモデル化し,目標と行動の両ポリシの下で行動可能性のバランスをとることを示す。
論文 参考訳(メタデータ) (2024-04-09T14:46:48Z) - Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving [15.671811785579118]
自己回帰閉ループモデルのパラメータ化は,再学習を伴わずに可能であることを示す。
離散潜在モード上での完全反応性閉ループ計画を提案する。
当社のアプローチは、CARLAにおける従来の最先端技術よりも、高密度なトラフィックシナリオに挑戦する上で優れています。
論文 参考訳(メタデータ) (2024-03-12T01:00:52Z) - World Models via Policy-Guided Trajectory Diffusion [21.89154719069519]
既存の世界モデルは、次の状態を予測するために、ポリシーから次のアクションをサンプリングする、自己回帰的である。
本稿では, 自己回帰的でない新しい世界モデリング手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T21:46:09Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WMは、既存のエンド・ツー・エンドの計画モデルと互換性のある世界初のドライビングワールドモデルである。
ドライビングシーンで高忠実度マルチビュー映像を生成する。
論文 参考訳(メタデータ) (2023-11-29T18:59:47Z) - COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
ダイナスタイルのモデルベース強化学習には、ポリシー学習と実環境探索のためのサンプルを生成するモデルロールアウトという2つのフェーズが含まれる。
$textttCOPlanner$は、不正確な学習された動的モデル問題に対処するモデルベースのメソッドのための計画駆動フレームワークである。
論文 参考訳(メタデータ) (2023-10-11T06:10:07Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Policy Representation via Diffusion Probability Model for Reinforcement
Learning [67.56363353547775]
拡散確率モデルを用いて政策表現の理論的基礎を構築する。
本稿では,拡散政策の多様性を理解するための理論を提供する,拡散政策の収束保証について述べる。
本研究では,Diffusion POlicyを用いたモデルフリーオンラインRLの実装であるDIPOを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:23:41Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
ドライビングSMARTSは、動的相互作用コンテキストにおける分散シフトに起因する問題に対処するために設計された定期的な競争である。
提案するコンペティションは,強化学習(RL)やオフライン学習など,方法論的に多様なソリューションをサポートする。
論文 参考訳(メタデータ) (2022-11-14T17:10:53Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
オフライン強化学習(RL)は、以前に収集した静的データセットを使って最適なポリシーを学ぶことを目的としている。
本稿では,条件付き拡散モデルを用いたディフュージョンQ-ラーニング(Diffusion-QL)を提案する。
本手法はD4RLベンチマークタスクの大部分において最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-08-12T09:54:11Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
本研究の目的は,モデルベース学習によるマルチエージェント制御のデータ効率の向上である。
エージェントが協力的であり、隣人とのみローカルに通信するネットワークシステムについて検討する。
提案手法では,各エージェントが将来の状態を予測し,通信によって予測をブロードキャストする動的モデルを学習し,その後,モデルロールアウトに基づいてポリシーをトレーニングする。
論文 参考訳(メタデータ) (2022-07-13T23:52:14Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
オフライン強化学習(英語: offline reinforcement learning, RL)とは、以前に収集された大量のデータから完全に学習ポリシーを学習する問題を指す。
既存のモデルベースRLアルゴリズムは,すでにオフライン設定において大きな利益を上げていることを示す。
本稿では,既存のモデルに基づくRL法を,力学の不確実性によって人為的に罰せられる報酬で適用することを提案する。
論文 参考訳(メタデータ) (2020-05-27T08:46:41Z) - Diverse and Admissible Trajectory Forecasting through Multimodal Context
Understanding [46.52703817997932]
自律走行におけるマルチエージェント軌道予測には、周囲の車両や歩行者の挙動を正確に予測するエージェントが必要である。
マルチモーダル世界から複数の入力信号を合成するモデルを提案する。
従来の最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-03-06T13:59:39Z) - Integrating Deep Reinforcement Learning with Model-based Path Planners
for Automated Driving [0.0]
本稿では、経路計画管を視覚ベースのDRLフレームワークに統合するためのハイブリッドアプローチを提案する。
要約すると、DRLエージェントは、パスプランナーのウェイポイントをできるだけ近くに追従するように訓練される。
実験の結果,提案手法は経路を計画し,ランダムに選択した起点-終点間を移動可能であることがわかった。
論文 参考訳(メタデータ) (2020-02-02T17:10:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。