論文の概要: Integrating Deep Reinforcement Learning with Model-based Path Planners
for Automated Driving
- arxiv url: http://arxiv.org/abs/2002.00434v2
- Date: Tue, 19 May 2020 17:03:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 20:05:28.023987
- Title: Integrating Deep Reinforcement Learning with Model-based Path Planners
for Automated Driving
- Title(参考訳): 自動車運転における深層強化学習とモデルベースパスプランナの統合
- Authors: Ekim Yurtsever, Linda Capito, Keith Redmill, Umit Ozguner
- Abstract要約: 本稿では、経路計画管を視覚ベースのDRLフレームワークに統合するためのハイブリッドアプローチを提案する。
要約すると、DRLエージェントは、パスプランナーのウェイポイントをできるだけ近くに追従するように訓練される。
実験の結果,提案手法は経路を計画し,ランダムに選択した起点-終点間を移動可能であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated driving in urban settings is challenging. Human participant
behavior is difficult to model, and conventional, rule-based Automated Driving
Systems (ADSs) tend to fail when they face unmodeled dynamics. On the other
hand, the more recent, end-to-end Deep Reinforcement Learning (DRL) based
model-free ADSs have shown promising results. However, pure learning-based
approaches lack the hard-coded safety measures of model-based controllers. Here
we propose a hybrid approach for integrating a path planning pipe into a vision
based DRL framework to alleviate the shortcomings of both worlds. In summary,
the DRL agent is trained to follow the path planner's waypoints as close as
possible. The agent learns this policy by interacting with the environment. The
reward function contains two major terms: the penalty of straying away from the
path planner and the penalty of having a collision. The latter has precedence
in the form of having a significantly greater numerical value. Experimental
results show that the proposed method can plan its path and navigate between
randomly chosen origin-destination points in CARLA, a dynamic urban simulation
environment. Our code is open-source and available online.
- Abstract(参考訳): 都市部での自動運転は難しい。
人間の参加行動はモデル化が困難であり、従来のルールベースの自動運転システム(adss)は、非モデリングのダイナミクスに直面すると失敗する傾向がある。
一方、より最近のDRL(Deep Reinforcement Learning)ベースのモデルフリーADSは、有望な結果を示している。
しかし、純粋な学習ベースのアプローチは、モデルベースのコントローラのハードコードされた安全性対策を欠いている。
本稿では、経路計画管を視覚ベースのDRLフレームワークに統合し、両世界の欠点を軽減するためのハイブリッドアプローチを提案する。
要約すると、DRLエージェントは、パスプランナーのウェイポイントをできるだけ近くに追従するように訓練される。
エージェントは環境と対話することでこのポリシーを学ぶ。
報酬関数には、パスプランナーから離れる罰と衝突する罰の2つの主要な用語が含まれている。
後者は、はるかに大きな数値を持つ形で優先する。
実験の結果, 提案手法は, 動的都市シミュレーション環境であるCARLAにおいて, ランダムに選択した起点間を走行できることがわかった。
私たちのコードはオープンソースで、オンラインで利用可能です。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Let Hybrid A* Path Planner Obey Traffic Rules: A Deep Reinforcement Learning-Based Planning Framework [0.0]
本研究では、ハイブリッドA*経路計画のような低レベルアルゴリズムと深層強化学習(DRL)を組み合わせることで、高レベルな意思決定を行う。
ハイブリッドA*プランナーは、モデル予測コントローラ(MPC)によって実行される衝突のない軌道を生成することができる
さらに、DRLアルゴリズムは、選択した時間内にレーン変更コマンドを一貫性を保つことができる。
論文 参考訳(メタデータ) (2024-07-01T12:00:10Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - WROOM: An Autonomous Driving Approach for Off-Road Navigation [17.74237088460657]
オフロード環境における自動運転車のためのエンドツーエンド強化学習システム(RL)を設計する。
ルールベースのコントローラを模倣してエージェントを温め、PPO(Proximal Policy Optimization)を利用してポリシーを改善する。
オフロード走行シナリオを再現する新しいシミュレーション環境を提案し,本提案手法を実車に展開する。
論文 参考訳(メタデータ) (2024-04-12T23:55:59Z) - Action and Trajectory Planning for Urban Autonomous Driving with
Hierarchical Reinforcement Learning [1.3397650653650457]
本稿では,階層型強化学習法(atHRL)を用いた行動・軌道プランナを提案する。
我々は、複雑な都市運転シナリオにおける広範な実験を通して、atHRLの有効性を実証的に検証した。
論文 参考訳(メタデータ) (2023-06-28T07:11:02Z) - Causal Imitative Model for Autonomous Driving [85.78593682732836]
慣性および衝突問題に対処するための因果Imitative Model (CIM)を提案する。
CIMは因果モデルを明確に発見し、ポリシーのトレーニングに利用します。
実験の結果,本手法は慣性および衝突速度において従来の手法よりも優れていたことがわかった。
論文 参考訳(メタデータ) (2021-12-07T18:59:15Z) - UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning
Leveraging Planning [1.1339580074756188]
オフライン強化学習(RL)は、オフラインデータから意思決定を学ぶためのフレームワークを提供する。
自動運転車(SDV)は、おそらく準最適データセットの振る舞いよりも優れるポリシーを学ぶ。
これはモデルベースのオフラインRLアプローチの使用を動機付け、プランニングを活用する。
論文 参考訳(メタデータ) (2021-11-22T10:37:52Z) - Learning to drive from a world on rails [78.28647825246472]
モデルベースアプローチによって,事前記録された運転ログからインタラクティブな視覚ベースの運転方針を学習する。
世界の前方モデルは、あらゆる潜在的な運転経路の結果を予測する運転政策を監督する。
提案手法は,carla リーダボードにまずランク付けし,40 倍少ないデータを用いて25%高い運転スコアを得た。
論文 参考訳(メタデータ) (2021-05-03T05:55:30Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
本稿では,マルコフ決定過程(MDP)をモデルとした自律動的システムの運動計画について検討する。
LDGBA と MDP の間に組込み製品 MDP (EP-MDP) を設計することである。
モデルフリー強化学習(RL)のためのLDGBAベースの報酬形成と割引スキームは、EP-MDP状態にのみ依存する。
論文 参考訳(メタデータ) (2021-02-24T01:11:25Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
不確実かつ動的条件下で安全な軌道を計画することは、自律運転問題を著しく複雑にする。
RRT(Rapidly Exploring Random Trees)のような現在のサンプリングベース手法は、高い計算コストのため、この問題には理想的ではない。
軌道計画のための階層型強化学習構造とPID(Proportional-Integral-Derivative)コントローラを提案する。
論文 参考訳(メタデータ) (2020-11-09T20:49:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。