4DPV: 4D Pet from Videos by Coarse-to-Fine Non-Rigid Radiance Fields
- URL: http://arxiv.org/abs/2411.10275v1
- Date: Fri, 15 Nov 2024 15:31:58 GMT
- Title: 4DPV: 4D Pet from Videos by Coarse-to-Fine Non-Rigid Radiance Fields
- Authors: Sergio M. de Paco, Antonio Agudo,
- Abstract summary: We present a coarse-to-fine neural model to recover the camera pose and the 4D reconstruction of an unknown object from multiple RGB sequences in the wild.
Our approach does not consider any pre-built 3D template nor 3D training data as well as controlled conditions.
We thoroughly validate the method on challenging scenarios with complex and real-world deformations.
- Score: 16.278222277579655
- License:
- Abstract: We present a coarse-to-fine neural deformation model to simultaneously recover the camera pose and the 4D reconstruction of an unknown object from multiple RGB sequences in the wild. To that end, our approach does not consider any pre-built 3D template nor 3D training data as well as controlled illumination conditions, and can sort out the problem in a self-supervised manner. Our model exploits canonical and image-variant spaces where both coarse and fine components are considered. We introduce a neural local quadratic model with spatio-temporal consistency to encode fine details that is combined with canonical embeddings in order to establish correspondences across sequences. We thoroughly validate the method on challenging scenarios with complex and real-world deformations, providing both quantitative and qualitative evaluations, an ablation study and a comparison with respect to competing approaches. Our project is available at https://github.com/smontode24/4DPV.
Related papers
- No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Object-Centric Domain Randomization for 3D Shape Reconstruction in the Wild [22.82439286651921]
One of the biggest challenges in single-view 3D shape reconstruction in the wild is the scarcity of 3D shape, 2D image>-paired data from real-world environments.
Inspired by remarkable achievements via domain randomization, we propose ObjectDR which synthesizes such paired data via a random simulation of visual variations in object appearances and backgrounds.
arXiv Detail & Related papers (2024-03-21T16:40:10Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - MoDA: Modeling Deformable 3D Objects from Casual Videos [84.29654142118018]
We propose neural dual quaternion blend skinning (NeuDBS) to achieve 3D point deformation without skin-collapsing artifacts.
In the endeavor to register 2D pixels across different frames, we establish a correspondence between canonical feature embeddings that encodes 3D points within the canonical space.
Our approach can reconstruct 3D models for humans and animals with better qualitative and quantitative performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-04-17T13:49:04Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
Reconstructing the 3D shape of an object from a single RGB image is a long-standing and highly challenging problem in computer vision.
We propose a novel method for single-image 3D reconstruction which generates a sparse point cloud via a conditional denoising diffusion process.
arXiv Detail & Related papers (2023-02-21T13:37:07Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.