論文の概要: RETR: Multi-View Radar Detection Transformer for Indoor Perception
- arxiv url: http://arxiv.org/abs/2411.10293v1
- Date: Fri, 15 Nov 2024 15:51:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:39:34.669692
- Title: RETR: Multi-View Radar Detection Transformer for Indoor Perception
- Title(参考訳): RETR:屋内知覚のためのマルチビューレーダ検出変換器
- Authors: Ryoma Yataka, Adriano Cardace, Pu Perry Wang, Petros Boufounos, Ryuhei Takahashi,
- Abstract要約: Radar dEtection TRansformer (RETR) は、多視点レーダ認識に適した一般的なDETRアーキテクチャの拡張である。
提案手法は,オブジェクト検出のための15.38+AP,インスタンス分割のための11.77+IoUで,既存の最先端手法よりも優れている。
- 参考スコア(独自算出の注目度): 2.6913398550088483
- License:
- Abstract: Indoor radar perception has seen rising interest due to affordable costs driven by emerging automotive imaging radar developments and the benefits of reduced privacy concerns and reliability under hazardous conditions (e.g., fire and smoke). However, existing radar perception pipelines fail to account for distinctive characteristics of the multi-view radar setting. In this paper, we propose Radar dEtection TRansformer (RETR), an extension of the popular DETR architecture, tailored for multi-view radar perception. RETR inherits the advantages of DETR, eliminating the need for hand-crafted components for object detection and segmentation in the image plane. More importantly, RETR incorporates carefully designed modifications such as 1) depth-prioritized feature similarity via a tunable positional encoding (TPE); 2) a tri-plane loss from both radar and camera coordinates; and 3) a learnable radar-to-camera transformation via reparameterization, to account for the unique multi-view radar setting. Evaluated on two indoor radar perception datasets, our approach outperforms existing state-of-the-art methods by a margin of 15.38+ AP for object detection and 11.77+ IoU for instance segmentation, respectively.
- Abstract(参考訳): 室内レーダの認識は、新興の自動車画像レーダの開発による安価なコストと、危険条件(例えば、火災や煙)下でのプライバシー上の懸念や信頼性の低下による利益により、関心が高まっている。
しかし、既存のレーダ認識パイプラインは、マルチビューレーダ設定の特徴的な特徴を説明できない。
本稿では,多視点レーダ認識に適した一般的なDETRアーキテクチャの拡張であるRadar dEtection TRansformer (RETR)を提案する。
RETRはDETRの利点を継承し、画像平面におけるオブジェクトの検出とセグメンテーションのための手作りのコンポーネントを不要にする。
さらに重要なこととして、RETRは慎重に設計された変更を取り入れている。
1) 可変位置符号化(TPE)による深度優先特徴類似性
2 レーダー及びカメラの座標による三面損失
3)再パラメータ化による学習可能なレーダ・カメラ変換は,ユニークなマルチビューレーダ設定を考慮に入れた。
本手法は,2つの屋内レーダ認識データセットで評価され,対象検出のための15.38+AP,インスタンスセグメンテーションのための11.77+IoUに比較して,既存の最先端手法よりも優れていた。
関連論文リスト
- RCBEVDet++: Toward High-accuracy Radar-Camera Fusion 3D Perception Network [34.45694077040797]
本稿では、BEEVDetと呼ばれるレーダーカメラ融合3Dオブジェクト検出フレームワークを提案する。
RadarBEVNetは、スパースレーダーポイントを高密度の鳥の目視特徴に符号化する。
提案手法は,3次元オブジェクト検出,BEVセマンティックセグメンテーション,および3次元マルチオブジェクト追跡タスクにおいて,最先端のレーダカメラ融合を実現する。
論文 参考訳(メタデータ) (2024-09-08T05:14:27Z) - RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar [15.776076554141687]
3D占有に基づく知覚パイプラインは、かなり進歩した自律運転を持つ。
現在の方法では、LiDARやカメラの入力を3D占有率予測に頼っている。
本稿では,4次元イメージングレーダセンサを用いた3次元占有予測手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:48:17Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Better Monocular 3D Detectors with LiDAR from the Past [64.6759926054061]
カメラベースの3D検出器は、画像の奥行きのあいまいさのため、LiDARベースの検出器に比べて性能が劣ることが多い。
本研究では,未ラベルの歴史的LiDARデータを活用することにより,単分子3D検出器の改良を図る。
複数の最先端モデルやデータセットに対して,9.66ミリ秒の追加レイテンシとストレージコストの低い,一貫性と大幅なパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-04-08T01:38:43Z) - MVFAN: Multi-View Feature Assisted Network for 4D Radar Object Detection [15.925365473140479]
4Dレーダーは、悪天候下での弾力性と費用対効果が認められている。
LiDARやカメラとは異なり、レーダーは厳しい気象条件で損傷を受けないままである。
本稿では,自律走行車のためのレーダーによる3次元物体検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-25T06:10:07Z) - TransRadar: Adaptive-Directional Transformer for Real-Time Multi-View
Radar Semantic Segmentation [21.72892413572166]
本稿では,レーダデータの多入力融合を用いたレーダシーンのセマンティックセマンティックセマンティクスへの新しいアプローチを提案する。
提案手法であるTransRadarは,CARRADAとRADIalのデータセット上で最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-10-03T17:59:05Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - Rethinking of Radar's Role: A Camera-Radar Dataset and Systematic
Annotator via Coordinate Alignment [38.24705460170415]
CRUWと呼ばれる新しいデータセットを体系的なアノテーションとパフォーマンス評価システムで提案する。
CRUWは、レーダーの無線周波数(RF)画像から3Dのオブジェクトを純粋に分類し、ローカライズすることを目指しています。
私たちの知る限り、CRUWは体系的なアノテーションと評価システムを備えた最初の公開大規模データセットです。
論文 参考訳(メタデータ) (2021-05-11T17:13:45Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。