論文の概要: A Realistic Collimated X-Ray Image Simulation Pipeline
- arxiv url: http://arxiv.org/abs/2411.10308v1
- Date: Fri, 15 Nov 2024 16:04:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:38:50.047861
- Title: A Realistic Collimated X-Ray Image Simulation Pipeline
- Title(参考訳): 実時間衝突X線画像シミュレーションパイプライン
- Authors: Benjamin El-Zein, Dominik Eckert, Thomas Weber, Maximilian Rohleder, Ludwig Ritschl, Steffen Kappler, Andreas Maier,
- Abstract要約: コリメータ検出は、信頼できない情報や利用できない情報を持つX線システムでは依然として困難な課題である。
本稿では,X線画像におけるコリメータ影の特性をシミュレートする物理動機付き画像処理パイプラインを提案する。
- 参考スコア(独自算出の注目度): 3.7243418909643093
- License:
- Abstract: Collimator detection remains a challenging task in X-ray systems with unreliable or non-available information about the detectors position relative to the source. This paper presents a physically motivated image processing pipeline for simulating the characteristics of collimator shadows in X-ray images. By generating randomized labels for collimator shapes and locations, incorporating scattered radiation simulation, and including Poisson noise, the pipeline enables the expansion of limited datasets for training deep neural networks. We validate the proposed pipeline by a qualitative and quantitative comparison against real collimator shadows. Furthermore, it is demonstrated that utilizing simulated data within our deep learning framework not only serves as a suitable substitute for actual collimators but also enhances the generalization performance when applied to real-world data.
- Abstract(参考訳): コリメータ検出はX線システムでは依然として困難な課題であり、検出器の位置に関する信頼性の低い情報や入手不可能な情報がある。
本稿では,X線画像におけるコリメータ影の特性をシミュレートする物理動機付き画像処理パイプラインを提案する。
コリメータの形状と位置のランダムなラベルを生成し、散乱放射シミュレーションを取り入れ、ポアソンノイズを含むことにより、パイプラインはディープニューラルネットワークをトレーニングするための限られたデータセットの拡張を可能にする。
提案したパイプラインを,実コリメータの影に対して定性的かつ定量的に比較して検証する。
さらに,我々のディープラーニングフレームワークにおけるシミュレーションデータの利用は,実際のコリメータに適した代用として機能するだけでなく,実世界のデータに適用した場合の一般化性能も向上することを示した。
関連論文リスト
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Cardiac ultrasound simulation for autonomous ultrasound navigation [4.036497185262817]
本稿では,他のモーダルや任意の位置から大量の超音波画像を生成する手法を提案する。
本稿では,他のモダリティからのセグメンテーション,最適化されたデータ表現,GPUによるモンテカルロ経路のトレースを用いた新しいシミュレーションパイプラインを提案する。
提案手法により,患者固有の超音波画像の高速かつ正確な生成が可能となり,ナビゲーション関連タスクのためのトレーニングネットワークのユーザビリティが実証された。
論文 参考訳(メタデータ) (2024-02-09T15:14:48Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
本稿では,最適な着陸軌道からイベントベースの視覚データセットを生成する手法を提案する。
我々は,惑星と小惑星の自然シーン生成ユーティリティを用いて,月面のフォトリアリスティックな画像のシーケンスを構築した。
パイプラインは500トラジェクトリのデータセットを構築することで,表面特徴の現実的なイベントベース表現を生成することができることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:14:20Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - SimuShips -- A High Resolution Simulation Dataset for Ship Detection
with Precise Annotations [0.0]
畳み込みニューラルネットワーク(CNN)に基づく最先端の障害物検出アルゴリズム
SimuShipsは、海洋環境向けに公開されているシミュレーションベースのデータセットである。
論文 参考訳(メタデータ) (2022-09-22T07:33:31Z) - Learning optical flow from still images [53.295332513139925]
我々は,容易に利用可能な単一の実画像から,高精度な光学的フローアノテーションを迅速かつ多量に生成するフレームワークを提案する。
既知の動きベクトルと回転角を持つ再構成された環境でカメラを仮想的に移動させる。
我々のデータでトレーニングすると、最先端の光フローネットワークは、実データを見るのに優れた一般化を実現する。
論文 参考訳(メタデータ) (2021-04-08T17:59:58Z) - Learning Ultrasound Rendering from Cross-Sectional Model Slices for
Simulated Training [13.640630434743837]
計算シミュレーションは、バーチャルリアリティーにおけるそのようなスキルの訓練を容易にする。
インタラクティブな時間に任意のレンダリングやシミュレーションプロセスをバイパスするためにここに提案します。
我々は、専用のジェネレータアーキテクチャと入力供給方式を備えた生成的対向フレームワークを使用する。
論文 参考訳(メタデータ) (2021-01-20T21:58:19Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - Tubular Shape Aware Data Generation for Semantic Segmentation in Medical
Imaging [2.6673784948574215]
本稿では, 管状物体の合成データ生成手法を提案する。
提案手法は,ペア画像マスクデータの必要性を排除し,弱いラベル付きデータセットのみを必要とする。
X線画像における管およびカテーテルの分割作業に対するアプローチの適用性について報告する。
論文 参考訳(メタデータ) (2020-10-02T10:28:25Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
ハンドマウント型RGB-Dカメラを用いて把握可能な視点を探索する方法を示す。
現実的な3段階の移動可能な能動把握パイプラインを開発し、未確認のクラッタシーンに適応する。
本研究のパイプラインでは,カテゴリ非関連行動の把握と確保において,スパース報酬問題を克服するために,新しいマスク誘導報酬を提案する。
論文 参考訳(メタデータ) (2020-04-28T08:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。