論文の概要: Game Theoretic Liquidity Provisioning in Concentrated Liquidity Market Makers
- arxiv url: http://arxiv.org/abs/2411.10399v1
- Date: Fri, 15 Nov 2024 18:09:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:50.366729
- Title: Game Theoretic Liquidity Provisioning in Concentrated Liquidity Market Makers
- Title(参考訳): 集中型流動性市場におけるゲーム理論の流動性制御
- Authors: Weizhao Tang, Rachid El-Azouzi, Cheng Han Lee, Ethan Chan, Giulia Fanti,
- Abstract要約: 集中流動性市場メーカ(CLMM)におけるLPのインセンティブについて検討する。
リスク資産を有する流動性プールでは、LPはナッシュ均衡から遠く離れた投資戦略を採用する。
いくつかのプールにおいて、我々のゲームのナッシュ均衡をより緊密に適合させる戦略を更新することで、LPは日々のリターンの中央値を16.99ドル改善できることを示す。
- 参考スコア(独自算出の注目度): 8.56210578177444
- License:
- Abstract: Automated marker makers (AMMs) are a class of decentralized exchanges that enable the automated trading of digital assets. They accept deposits of digital tokens from liquidity providers (LPs); tokens can be used by traders to execute trades, which generate fees for the investing LPs. The distinguishing feature of AMMs is that trade prices are determined algorithmically, unlike classical limit order books. Concentrated liquidity market makers (CLMMs) are a major class of AMMs that offer liquidity providers flexibility to decide not only \emph{how much} liquidity to provide, but \emph{in what ranges of prices} they want the liquidity to be used. This flexibility can complicate strategic planning, since fee rewards are shared among LPs. We formulate and analyze a game theoretic model to study the incentives of LPs in CLMMs. Our main results show that while our original formulation admits multiple Nash equilibria and has complexity quadratic in the number of price ticks in the contract, it can be reduced to a game with a unique Nash equilibrium whose complexity is only linear. We further show that the Nash equilibrium of this simplified game follows a waterfilling strategy, in which low-budget LPs use up their full budget, but rich LPs do not. Finally, by fitting our game model to real-world CLMMs, we observe that in liquidity pools with risky assets, LPs adopt investment strategies far from the Nash equilibrium. Under price uncertainty, they generally invest in fewer and wider price ranges than our analysis suggests, with lower-frequency liquidity updates. We show that across several pools, by updating their strategy to more closely match the Nash equilibrium of our game, LPs can improve their median daily returns by \$116, which corresponds to an increase of 0.009\% in median daily return on investment.
- Abstract(参考訳): AMM(Automated Markermaker)は、デジタル資産の自動取引を可能にする分散型取引所である。
彼らは、流動性プロバイダ(LP)からのデジタルトークンの預金を受け取り、トレーダーが取引を行うためにトークンを使用することができ、投資用LPの手数料を生成する。
AMMの際立った特徴は、古典的な制限順序書とは異なり、取引価格がアルゴリズムによって決定されることである。
集中型流動性市場メーカー(CLMM)は、流動性提供者に対して、提供すべき「emph{how much}」の流動性だけでなく、その流動性の使用を望む「emph{in」を決定する柔軟性を提供する主要なAMMのクラスである。
この柔軟性は、有料報酬がLP間で共有されるため、戦略的計画が複雑になる可能性がある。
ゲーム理論モデルの定式化と解析を行い,CLMMにおけるLPのインセンティブについて検討する。
本研究の主目的は,従来の定式化が複数のナッシュ平衡を許容し,契約における価格ダッチ数に2次的な複雑性を持つにもかかわらず,複雑性が線形であるユニークなナッシュ平衡を持つゲームに還元できることである。
さらに, この簡易ゲームにおけるナッシュ均衡は, 低予算のLPが全予算を充てるが, リッチなLPは利用しない, という, 給水戦略に従っていることを示す。
最後に,我々のゲームモデルを現実のCLMMに適合させることにより,LPがナッシュ均衡から遠く離れた投資戦略を採用することを観察する。
価格の不確実性の下では、一般的に、私たちの分析が示唆しているよりも小さくより広い価格範囲に投資し、低い周波数の流動性を更新します。
いくつかのプールにおいて、我々のゲームのナッシュ均衡をより緊密に整合させる戦略を更新することにより、LPは中央値の日当リターンを116ドルに改善できることを示す。
関連論文リスト
- Liquid Staking Tokens in Automated Market Makers [5.277756703318046]
自動市場メーカ(AMM)における液状ステイキングトークン(LST)の研究
LSTは、ステークオブテイクブロックチェーン上のステークされた資産のトークン化表現である。
取引手数料は不定期な損失を補うことが多いが、多くのプールにとって完全な買収の方が利益がある。
論文 参考訳(メタデータ) (2024-03-15T11:53:46Z) - Optimistic Policy Gradient in Multi-Player Markov Games with a Single
Controller: Convergence Beyond the Minty Property [89.96815099996132]
単一コントローラを用いたマルチプレイヤーゲームにおいて,楽観的なポリシー勾配手法を特徴付ける新しいフレームワークを開発した。
我々のアプローチは、我々が導入する古典的なミニティの自然一般化に依存しており、マルコフゲームを超えてさらなる応用が期待できる。
論文 参考訳(メタデータ) (2023-12-19T11:34:10Z) - ZeroSwap: Data-driven Optimal Market Making in DeFi [23.671367118750872]
AMM(Automated Market Makers)は、分散金融における流動性供給と需要に合致する主要なセンターである。
本稿では,アセットの外部価格を最適に追跡する,最初の最適ベイズアルゴリズムとモデルフリーなデータ駆動アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-13T21:28:19Z) - A Black-box Approach for Non-stationary Multi-agent Reinforcement Learning [53.83345471268163]
非定常マルチエージェントシステムにおける平衡の学習について検討する。
単エージェント学習へのブラックボックス還元による様々な平衡の検証方法を示す。
論文 参考訳(メタデータ) (2023-06-12T23:48:24Z) - Breaking the Curse of Multiagents in a Large State Space: RL in Markov
Games with Independent Linear Function Approximation [56.715186432566576]
そこで本稿では,大規模状態空間と多数のエージェントを用いた強化学習のための新しいモデルである独立線形マルコフゲームを提案する。
我々は,各エージェントの関数クラスの複雑性にのみ対応して,サンプル境界複雑性を持つ相関平衡 (CCE) とマルコフ相関平衡 (CE) を学習するための新しいアルゴリズムを設計する。
提案アルゴリズムは,1)複数のエージェントによる非定常性に対処するためのポリシーリプレイと,機能近似の利用,2)マルコフ均衡の学習とマルコフゲームにおける探索の分離という,2つの重要な技術革新に依存している。
論文 参考訳(メタデータ) (2023-02-07T18:47:48Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
分散取引所(DEX)は、テクノロジーを活用した新しいタイプのマーケットプレイスである。
そのようなDECの1つ、Unixwap v3は、流動性プロバイダが資金のアクティブな価格間隔を指定することで、より効率的に資金を割り当てることを可能にする。
これにより、価格間隔を選択するための最適な戦略を見出すことが問題となる。
我々は、この問題を非確率的な報酬を伴うオンライン学習問題として定式化する。
論文 参考訳(メタデータ) (2023-02-01T17:21:40Z) - QLAMMP: A Q-Learning Agent for Optimizing Fees on Automated Market
Making Protocols [5.672898304129217]
本稿では,所定のAMMプロトコルの最適料金率を学習し,係数を活用するQ-Learning Agent for Market Making Protocols (QLAMMP) を開発する。
QLAMMPは、すべてのシミュレートされたテスト条件下で、その静的な性能を一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2022-11-28T00:30:45Z) - Minimax-Optimal Multi-Agent RL in Zero-Sum Markov Games With a
Generative Model [50.38446482252857]
2人プレイのゼロサムマルコフゲームは多エージェント強化学習においておそらく最も基本的な設定である。
我々は,$$ widetildeObiggを用いて,$varepsilon$-approximate Markov NEポリシーを学習する学習アルゴリズムを開発した。
我々は、分散型量の役割を明確にするFTRLに対する洗練された後悔境界を導出する。
論文 参考訳(メタデータ) (2022-08-22T17:24:55Z) - Can Reinforcement Learning Find Stackelberg-Nash Equilibria in
General-Sum Markov Games with Myopic Followers? [156.5760265539888]
我々は,マルチプレイヤーのジェネラルサムマルコフゲームについて,リーダーに指名されたプレイヤーとフォロワーに指名されたプレイヤーの1人を用いて研究した。
そのようなゲームに対して、我々のゴールは、政策対 $(pi*, nu*)$ であるスタックルバーグ・ナッシュ均衡 (SNE) を見つけることである。
オンラインとオフラインの両方でSNEを解くために,サンプル効率強化学習(RL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-12-27T05:41:14Z) - Allocating Indivisible Goods to Strategic Agents: Pure Nash Equilibria
and Fairness [16.187873844872637]
付加価値関数を持つ戦略エージェントの集合に、分割不可能な商品の集合をかなり割り当てるという問題を考察する。
我々の主なゴールは、全てのインスタンスに純粋なナッシュ平衡を持つメカニズムが存在するかどうかを探ることである。
対応するアロケーションは EFX だけでなく、最大シェアフェアネスも満足していることを示します。
論文 参考訳(メタデータ) (2021-09-17T16:57:20Z) - Strategic Liquidity Provision in Uniswap v3 [13.436603092715247]
流動性提供者(LP)は、資産の価格の1つ以上の閉区間に流動性を割り当てる。
動的流動性供給問題を形式化し、ニューラルネットワークベースの最適化フレームワークを提供する一般的な戦略に焦点をあてる。
論文 参考訳(メタデータ) (2021-06-22T19:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。