How to Build a Quantum Supercomputer: Scaling Challenges and Opportunities
- URL: http://arxiv.org/abs/2411.10406v1
- Date: Fri, 15 Nov 2024 18:22:46 GMT
- Title: How to Build a Quantum Supercomputer: Scaling Challenges and Opportunities
- Authors: Masoud Mohseni, Artur Scherer, K. Grace Johnson, Oded Wertheim, Matthew Otten, Navid Anjum Aadit, Kirk M. Bresniker, Kerem Y. Camsari, Barbara Chapman, Soumitra Chatterjee, Gebremedhin A. Dagnew, Aniello Esposito, Farah Fahim, Marco Fiorentino, Abdullah Khalid, Xiangzhou Kong, Bohdan Kulchytskyy, Ruoyu Li, P. Aaron Lott, Igor L. Markov, Robert F. McDermott, Giacomo Pedretti, Archit Gajjar, Allyson Silva, John Sorebo, Panagiotis Spentzouris, Ziv Steiner, Boyan Torosov, Davide Venturelli, Robert J. Visser, Zak Webb, Xin Zhan, Yonatan Cohen, Pooya Ronagh, Alan Ho, Raymond G. Beausoleil, John M. Martinis,
- Abstract summary: Small-scale demonstrations have become possible for quantum algorithmic primitives on hundreds of physical qubits.
Despite significant progress and excitement, the path toward a full-stack scalable technology is largely unknown.
We show how the road to scaling could be paved by adopting existing semiconductor technology to build much higher-quality qubits.
- Score: 3.864855748348313
- License:
- Abstract: In the span of four decades, quantum computation has evolved from an intellectual curiosity to a potentially realizable technology. Today, small-scale demonstrations have become possible for quantum algorithmic primitives on hundreds of physical qubits and proof-of-principle error-correction on a single logical qubit. Nevertheless, despite significant progress and excitement, the path toward a full-stack scalable technology is largely unknown. There are significant outstanding quantum hardware, fabrication, software architecture, and algorithmic challenges that are either unresolved or overlooked. These issues could seriously undermine the arrival of utility-scale quantum computers for the foreseeable future. Here, we provide a comprehensive review of these scaling challenges. We show how the road to scaling could be paved by adopting existing semiconductor technology to build much higher-quality qubits, employing system engineering approaches, and performing distributed quantum computation within heterogeneous high-performance computing infrastructures. These opportunities for research and development could unlock certain promising applications, in particular, efficient quantum simulation/learning of quantum data generated by natural or engineered quantum systems. To estimate the true cost of such promises, we provide a detailed resource and sensitivity analysis for classically hard quantum chemistry calculations on surface-code error-corrected quantum computers given current, target, and desired hardware specifications based on superconducting qubits, accounting for a realistic distribution of errors. Furthermore, we argue that, to tackle industry-scale classical optimization and machine learning problems in a cost-effective manner, distributed quantum-assisted probabilistic computing with custom-designed accelerators should be considered as a complementary path toward scalability.
Related papers
- A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Assessing and Advancing the Potential of Quantum Computing: A NASA Case Study [11.29246196323319]
We describe NASA's work in assessing and advancing the potential of quantum computing.
We discuss advances in algorithms, both near- and longer-term, and the results of our explorations on current hardware and with simulations.
This work also includes physics-inspired classical algorithms that can be used at application scale today.
arXiv Detail & Related papers (2024-06-21T19:05:42Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Preparing random state for quantum financing with quantum walks [1.2074552857379273]
We propose an efficient approach to load classical data into quantum states that can be executed by quantum computers or quantum simulators on classical hardware.
A practical example of implementing SSQW using Qiskit has been released as open-source software.
Showing its potential as a promising method for generating desired probability amplitude distributions highlights the potential application of SSQW in option pricing through quantum simulation.
arXiv Detail & Related papers (2023-02-24T08:01:35Z) - Quantum Computing Toolkit From Nuts and Bolts to Sack of Tools [0.0]
Quantum computing has the potential to provide exponential performance benefits in processing over classical computing.
It utilizes quantum mechanics phenomena (such as superposition, entanglement, and interference) to solve a computational problem.
Quantum computers are in the nascent stage of development and are noisy due to decoherence, i.e., quantum bits deteriorate with environmental interactions.
arXiv Detail & Related papers (2023-02-17T14:08:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.