Assessing and Advancing the Potential of Quantum Computing: A NASA Case Study
- URL: http://arxiv.org/abs/2406.15601v1
- Date: Fri, 21 Jun 2024 19:05:42 GMT
- Title: Assessing and Advancing the Potential of Quantum Computing: A NASA Case Study
- Authors: Eleanor G. Rieffel, Ata Akbari Asanjan, M. Sohaib Alam, Namit Anand, David E. Bernal Neira, Sophie Block, Lucas T. Brady, Steve Cotton, Zoe Gonzalez Izquierdo, Shon Grabbe, Erik Gustafson, Stuart Hadfield, P. Aaron Lott, Filip B. Maciejewski, Salvatore MandrĂ , Jeffrey Marshall, Gianni Mossi, Humberto Munoz Bauza, Jason Saied, Nishchay Suri, Davide Venturelli, Zhihui Wang, Rupak Biswas,
- Abstract summary: We describe NASA's work in assessing and advancing the potential of quantum computing.
We discuss advances in algorithms, both near- and longer-term, and the results of our explorations on current hardware and with simulations.
This work also includes physics-inspired classical algorithms that can be used at application scale today.
- Score: 11.29246196323319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing is one of the most enticing computational paradigms with the potential to revolutionize diverse areas of future-generation computational systems. While quantum computing hardware has advanced rapidly, from tiny laboratory experiments to quantum chips that can outperform even the largest supercomputers on specialized computational tasks, these noisy-intermediate scale quantum (NISQ) processors are still too small and non-robust to be directly useful for any real-world applications. In this paper, we describe NASA's work in assessing and advancing the potential of quantum computing. We discuss advances in algorithms, both near- and longer-term, and the results of our explorations on current hardware as well as with simulations, including illustrating the benefits of algorithm-hardware co-design in the NISQ era. This work also includes physics-inspired classical algorithms that can be used at application scale today. We discuss innovative tools supporting the assessment and advancement of quantum computing and describe improved methods for simulating quantum systems of various types on high-performance computing systems that incorporate realistic error models. We provide an overview of recent methods for benchmarking, evaluating, and characterizing quantum hardware for error mitigation, as well as insights into fundamental quantum physics that can be harnessed for computational purposes.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Quantum algorithms for scientific computing [0.0]
Areas that are likely to have the greatest impact on high performance computing include simulation of quantum systems, optimization, and machine learning.
Even a modest quantum enhancement to current classical techniques would have far-reaching impacts in areas such as weather forecasting, aerospace engineering, and the design of "green" materials for sustainable development.
arXiv Detail & Related papers (2023-12-22T18:29:31Z) - Quantum Algorithm Cards: Streamlining the development of hybrid
classical-quantum applications [0.0]
The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains.
The ability of quantum computers to scale computations implies better performance and efficiency for certain algorithmic tasks than current computers provide.
To gain benefit from such improvement, quantum computers must be integrated with existing software systems, a process that is not straightforward.
arXiv Detail & Related papers (2023-10-04T06:02:59Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
We unlock a new class of applications ripe for quantum computing research -- computational cognitive modeling.
We release QUATRO, a collection of quantum computing applications from cognitive models.
arXiv Detail & Related papers (2023-09-01T17:34:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Variational Quantum Algorithms for Computational Fluid Dynamics [0.0]
Variational quantum algorithms are particularly promising since they are comparatively noise tolerant.
We show how variational quantum algorithms can be utilized in computational fluid dynamics.
We argue that a quantum advantage over classical computing methods could be achieved by the end of this decade.
arXiv Detail & Related papers (2022-09-11T18:49:22Z) - Evolution of Quantum Computing: A Systematic Survey on the Use of
Quantum Computing Tools [5.557009030881896]
We conduct a systematic survey and categorize papers, tools, frameworks, platforms that facilitate quantum computing.
We discuss the current essence, identify open challenges and provide future research direction.
We conclude that scores of frameworks, tools and platforms are emerged in the past few years, improvement of currently available facilities would exploit the research activities in the quantum research community.
arXiv Detail & Related papers (2022-04-04T21:21:12Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum Computation [0.0]
We will discuss and summarized the core principles and practical application areas of quantum computation.
The mapping of computation onto the behavior of physical systems is a historical challenge.
We will evaluate the essential technology required for quantum computers to be able to function correctly.
arXiv Detail & Related papers (2020-06-04T11:57:18Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.