MARS: Unleashing the Power of Variance Reduction for Training Large Models
- URL: http://arxiv.org/abs/2411.10438v2
- Date: Mon, 10 Feb 2025 11:23:11 GMT
- Title: MARS: Unleashing the Power of Variance Reduction for Training Large Models
- Authors: Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, Quanquan Gu,
- Abstract summary: We propose a unified training framework for deep neural networks.
We introduce three instances of MARS that leverage preconditioned gradient optimization.
Results indicate that the implementation of MARS consistently outperforms Adam.
- Score: 56.47014540413659
- License:
- Abstract: Training deep neural networks--and more recently, large models demands efficient and scalable optimizers. Adaptive gradient algorithms like Adam, AdamW, and their variants have been central to this task. Despite the development of numerous variance reduction algorithms in the past decade aimed at accelerating stochastic optimization in both convex and nonconvex settings, variance reduction has not found widespread success in training deep neural networks or large language models. Consequently, it has remained a less favored approach in modern AI. In this paper, to unleash the power of variance reduction for efficient training of large models, we propose a unified optimization framework, MARS (Make vAriance Reduction Shine), which reconciles preconditioned gradient methods with variance reduction via a scaled stochastic recursive momentum technique. Within our framework, we introduce three instances of MARS that leverage preconditioned gradient updates based on AdamW, Lion, and Shampoo, respectively. We also draw a connection between our algorithms and existing optimizers. Experimental results on training GPT-2 models indicate that MARS consistently outperforms AdamW by a large margin. The implementation of MARS is available at https://github.com/AGI-Arena/MARS.
Related papers
- Variational Stochastic Gradient Descent for Deep Neural Networks [16.96187187108041]
Current state-of-the-arts are adaptive gradient-based optimization methods such as Adam.
Here, we propose to combine both approaches, resulting in the Variational Gradient Descent (VSGD)
We show how our VSGD method relates to other adaptive gradient-baseds like Adam.
arXiv Detail & Related papers (2024-04-09T18:02:01Z) - StochGradAdam: Accelerating Neural Networks Training with Stochastic Gradient Sampling [0.0]
We introduce StochGradAdam, a novel extension of the Adam algorithm, incorporating gradient sampling techniques.
StochGradAdam achieves comparable or superior performance to Adam, even when using fewer gradient updates per iteration.
The results suggest that this approach is particularly effective for large-scale models and datasets.
arXiv Detail & Related papers (2023-10-25T22:45:31Z) - Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models [134.83964935755964]
In deep learning, different kinds of deep networks typically need different extrapolations, which have to be chosen after multiple trials.
To relieve this issue and consistently improve the model training speed deep networks, we propose the ADAtive Nesterov momentum Transformer.
arXiv Detail & Related papers (2022-08-13T16:04:39Z) - A Control Theoretic Framework for Adaptive Gradient Optimizers in
Machine Learning [0.6526824510982802]
Adaptive gradient methods have become popular in optimizing deep neural networks.
Recent examples include AdaGrad and Adam.
We develop a generic framework for adaptive gradient methods.
arXiv Detail & Related papers (2022-06-04T17:55:33Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - SHINE: SHaring the INverse Estimate from the forward pass for bi-level
optimization and implicit models [15.541264326378366]
In recent years, implicit deep learning has emerged as a method to increase the depth of deep neural networks.
The training is performed as a bi-level problem, and its computational complexity is partially driven by the iterative inversion of a huge Jacobian matrix.
We propose a novel strategy to tackle this computational bottleneck from which many bi-level problems suffer.
arXiv Detail & Related papers (2021-06-01T15:07:34Z) - Adam revisited: a weighted past gradients perspective [57.54752290924522]
We propose a novel adaptive method weighted adaptive algorithm (WADA) to tackle the non-convergence issues.
We prove that WADA can achieve a weighted data-dependent regret bound, which could be better than the original regret bound of ADAGRAD.
arXiv Detail & Related papers (2021-01-01T14:01:52Z) - AdamP: Slowing Down the Slowdown for Momentum Optimizers on
Scale-invariant Weights [53.8489656709356]
Normalization techniques are a boon for modern deep learning.
It is often overlooked, however, that the additional introduction of momentum results in a rapid reduction in effective step sizes for scale-invariant weights.
In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances.
arXiv Detail & Related papers (2020-06-15T08:35:15Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.