論文の概要: User-wise Perturbations for User Identity Protection in EEG-Based BCIs
- arxiv url: http://arxiv.org/abs/2411.10469v1
- Date: Mon, 04 Nov 2024 14:17:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-24 05:33:12.987194
- Title: User-wise Perturbations for User Identity Protection in EEG-Based BCIs
- Title(参考訳): EEGに基づくBCIにおけるユーザアイデンティティ保護のためのユーザワイド摂動
- Authors: Xiaoqing Chen, Siyang Li, Yunlu Tu, Ziwei Wang, Dongrui Wu,
- Abstract要約: ユーザによる摂動を追加することで、EEG内のアイデンティティ情報を学習不能にできることを示す。
提案した摂動を脳波トレーニングデータに追加すると、BCIタスク情報が影響を受けないまま、データのユーザ識別情報が学習不能になる。
- 参考スコア(独自算出の注目度): 18.96849505757419
- License:
- Abstract: Objective: An electroencephalogram (EEG)-based brain-computer interface (BCI) is a direct communication pathway between the human brain and a computer. Most research so far studied more accurate BCIs, but much less attention has been paid to the ethics of BCIs. Aside from task-specific information, EEG signals also contain rich private information, e.g., user identity, emotion, disorders, etc., which should be protected. Approach: We show for the first time that adding user-wise perturbations can make identity information in EEG unlearnable. We propose four types of user-wise privacy-preserving perturbations, i.e., random noise, synthetic noise, error minimization noise, and error maximization noise. After adding the proposed perturbations to EEG training data, the user identity information in the data becomes unlearnable, while the BCI task information remains unaffected. Main results: Experiments on six EEG datasets using three neural network classifiers and various traditional machine learning models demonstrated the robustness and practicability of the proposed perturbations. Significance: Our research shows the feasibility of hiding user identity information in EEG data without impacting the primary BCI task information.
- Abstract(参考訳): 目的:脳波(EEG)ベースの脳コンピュータインタフェース(BCI)は、ヒト脳とコンピュータとの間の直接通信経路である。
これまでのほとんどの研究はより正確なBCIを研究しているが、BCIの倫理にはあまり注意が払われていない。
タスク固有の情報とは別に、EEG信号には保護されるべきリッチなプライベート情報(例えば、ユーザアイデンティティ、感情、障害など)も含まれている。
アプローチ: ユーザによる摂動を追加することで,EEG内のアイデンティティ情報を学習不能にできることを示す。
本稿では,ユーザのプライバシ保護による乱れ,すなわちランダムノイズ,合成ノイズ,エラー最小化ノイズ,エラー最大化ノイズの4種類を提案する。
提案した摂動を脳波トレーニングデータに追加すると、BCIタスク情報が影響を受けないまま、データのユーザ識別情報が学習不能になる。
主な結果: 3つのニューラルネットワーク分類器と各種機械学習モデルを用いた6つのEEGデータセットの実験は、提案された摂動の堅牢性と実践性を実証した。
意義:本研究は,主要なBCIタスク情報に影響を与えることなく,脳波データにユーザID情報を隠蔽する可能性を示す。
関連論文リスト
- EEG decoding with conditional identification information [7.873458431535408]
脳波信号を復号することは、人間の脳を解き放ち、脳とコンピュータのインターフェースを進化させるのに不可欠である。
従来の機械学習アルゴリズムは、高ノイズレベルと脳波信号の個人間変動によって妨げられている。
ディープニューラルネットワーク(DNN)の最近の進歩は、その高度な非線形モデリング能力のために、将来性を示している。
論文 参考訳(メタデータ) (2024-03-21T13:38:59Z) - Two Heads are Better than One: A Bio-inspired Method for Improving
Classification on EEG-ET Data [14.086094296850122]
EEGデータの分類は、Brain Computer Interfaces(BCI)とそのアプリケーションのパフォーマンスに不可欠である。
外部ノイズは、その生物学的性質と複雑なデータ収集プロセスのために、しばしば脳波データを妨害する。
脳波データの特徴選択と時間分割を統合した新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T23:44:39Z) - Adversarial Artifact Detection in EEG-Based Brain-Computer Interfaces [28.686844131216287]
機械学習は脳波(EEG)に基づく脳-コンピュータインターフェース(BCI)において大きな成功を収めた
近年の研究では、脳波に基づくBCIは敵の攻撃に弱いことが示されており、入力に小さな摂動が加えられると誤分類が生じる可能性がある。
本稿では,脳波によるBCIの逆検出を初めて検討する。
論文 参考訳(メタデータ) (2022-11-28T11:05:32Z) - EEG4Students: An Experimental Design for EEG Data Collection and Machine
Learning Analysis [3.8224226881450187]
本稿では,BCI分類タスクのためのパーソナルコンピュータ上で効率的に動作可能な機械学習アルゴリズムについて検討する。
脳波に基づくBCIデータを収集するために、安価なコンシューマグレードデバイスを用いてこのようなBCI実験を行う方法について検討する。
我々はデータ収集プロトコルであるEEG4Studentsを開発した。
論文 参考訳(メタデータ) (2022-08-24T19:10:11Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
我々は、診断とBCI(Brain-Computer-Interface)に関する2つの伝達学習課題を設計する。
第1タスクは、患者全体にわたる自動睡眠ステージアノテーションに対処する医療診断に重点を置いている。
タスク2はBrain-Computer Interface (BCI)に集中しており、被験者とデータセットの両方にわたる運動画像のデコードに対処する。
論文 参考訳(メタデータ) (2022-02-14T12:12:20Z) - EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks [68.01125081367428]
近年の研究では、機械学習アルゴリズムは敵攻撃に弱いことが示されている。
本稿では,脳波をベースとしたBCIの毒殺攻撃に狭周期パルスを用いることを提案する。
論文 参考訳(メタデータ) (2020-10-30T20:49:42Z) - Disguising Personal Identity Information in EEG Signals [6.9207437122916735]
本稿では,脳波信号の身元情報をダミーIDで偽装する手法を提案する。
元の脳波のアイデンティティ情報は、CycleGANベースの脳波測位モデルで偽の脳波に変換される。
モデルに制約を加えることで、脳波信号に対する関心の特徴を保存できる。
論文 参考訳(メタデータ) (2020-10-18T03:55:38Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) はユーザとシステム間の強力なコミュニケーションツールである。
近年の技術進歩は、脳波(EEG)に基づく翻訳医療用BCIへの関心が高まっている。
論文 参考訳(メタデータ) (2020-01-28T10:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。