論文の概要: Edge-Only Universal Adversarial Attacks in Distributed Learning
- arxiv url: http://arxiv.org/abs/2411.10500v1
- Date: Fri, 15 Nov 2024 11:06:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:36:01.016923
- Title: Edge-Only Universal Adversarial Attacks in Distributed Learning
- Title(参考訳): 分散学習におけるエッジオンリーの普遍的敵攻撃
- Authors: Giulio Rossolini, Tommaso Baldi, Alessandro Biondi, Giorgio Buttazzo,
- Abstract要約: 本研究では,攻撃者がモデルのエッジ部分のみにアクセスした場合に,ユニバーサルな敵攻撃を発生させる可能性について検討する。
提案手法は, エッジ側の重要な特徴を活用することで, 未知のクラウド部分において, 効果的な誤予測を誘導できることを示唆する。
ImageNetの結果は、未知のクラウド部分に対する強力な攻撃伝達性を示している。
- 参考スコア(独自算出の注目度): 49.546479320670464
- License:
- Abstract: Distributed learning frameworks, which partition neural network models across multiple computing nodes, enhance efficiency in collaborative edge-cloud systems but may also introduce new vulnerabilities. In this work, we explore the feasibility of generating universal adversarial attacks when an attacker has access to the edge part of the model only, which consists in the first network layers. Unlike traditional universal adversarial perturbations (UAPs) that require full model knowledge, our approach shows that adversaries can induce effective mispredictions in the unknown cloud part by leveraging key features on the edge side. Specifically, we train lightweight classifiers from intermediate features available at the edge, i.e., before the split point, and use them in a novel targeted optimization to craft effective UAPs. Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part. Additionally, we analyze the capability of an attacker to achieve targeted adversarial effect with edge-only knowledge, revealing intriguing behaviors. By introducing the first adversarial attacks with edge-only knowledge in split inference, this work underscores the importance of addressing partial model access in adversarial robustness, encouraging further research in this area.
- Abstract(参考訳): ニューラルネットワークモデルを複数のコンピューティングノードに分割する分散学習フレームワークは、エッジクラウドシステムのコラボレーション効率を高めると同時に、新たな脆弱性も導入する可能性がある。
本研究では,攻撃者が第1のネットワーク層を構成するモデルのエッジ部分のみにアクセスした場合に,普遍的な敵攻撃が発生する可能性について検討する。
完全モデル知識を必要とする従来の普遍的対人摂動(UAP)とは異なり、我々のアプローチは、エッジ側の重要な特徴を活用することで、未知のクラウド部分において、敵が効果的な誤予測を誘発できることを示している。
具体的には、エッジで利用可能な中間機能、すなわち分割点の前に軽量な分類器を訓練し、効率的なUAPを作成するために、新しい最適化手法として使用する。
ImageNetの結果は、未知のクラウド部分に対する強力な攻撃伝達性を示している。
さらに,攻撃者がエッジのみの知識で標的となる敵効果を達成する能力を分析し,興味深い行動を明らかにする。
分割推論においてエッジのみの知識を持つ最初の敵攻撃を導入することにより、この研究は、敵の堅牢性における部分的なモデルアクセスに対処することの重要性を浮き彫りにし、この分野のさらなる研究を奨励する。
関連論文リスト
- Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Saliency Diversified Deep Ensemble for Robustness to Adversaries [1.9659095632676094]
本研究は,深層アンサンブルのための新しい多様性促進学習手法を提案する。
この考え方は、アンサンブルのメンバーが一度にすべてのアンサンブルメンバーを標的にしないよう、サリエンシマップの多様性(SMD)を促進することである。
アンサンブル構成員間の移動性が低下し,最先端のアンサンブル防御よりも性能が向上したことを実証的に示す。
論文 参考訳(メタデータ) (2021-12-07T10:18:43Z) - Defensive Tensorization [113.96183766922393]
本稿では,ネットワークの遅延高次分解を利用した対角防御手法であるテンソル防御手法を提案する。
我々は,標準画像分類ベンチマークにおけるアプローチの有効性を実証的に実証した。
我々は,音声タスクとバイナリネットワークを考慮し,ドメイン間のアプローチと低精度アーキテクチャの汎用性を検証した。
論文 参考訳(メタデータ) (2021-10-26T17:00:16Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Explainability-Aware One Point Attack for Point Cloud Neural Networks [0.0]
本研究は2つの新たな攻撃手法である opa と cta を提案する。
入力インスタンスから1ポイントだけをシフトすることで、人気の高いクラウドネットワークを100%の成功率で騙すことができることを示す。
また,異なる点帰属分布が点クラウドネットワークの対角的ロバスト性に与える影響についても考察した。
論文 参考訳(メタデータ) (2021-10-08T14:29:02Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
特に、我々の層は、逆の層とは反対の方向に入力摂動を生成します。
我々は,我々の階層と名目および頑健に訓練されたモデルを組み合わせることで,我々のアプローチの有効性を検証する。
我々の対向層は、クリーンな精度でコストを伴わずにモデルロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2021-03-26T09:36:59Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
対人訓練は、敵の堅牢性を改善するための主要な方法であり、対人攻撃に対する第一線である。
本稿では,ネットワーク全体から,あるクラスに対応する決定境界に近い領域の重要部分に焦点を移す,対向ロバスト性の問題に対する新たな視点を提供する。
MNISTとCIFAR-10データセットの実験的結果は、この手法がトレーニングデータから非常に小さなデータセットを使用しても、敵の堅牢性を大幅に向上することを示している。
論文 参考訳(メタデータ) (2020-08-18T10:23:57Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。