Vision Eagle Attention: A New Lens for Advancing Image Classification
- URL: http://arxiv.org/abs/2411.10564v1
- Date: Fri, 15 Nov 2024 20:21:59 GMT
- Title: Vision Eagle Attention: A New Lens for Advancing Image Classification
- Authors: Mahmudul Hasan,
- Abstract summary: I introduce Vision Eagle Attention, a novel attention mechanism that enhances visual feature extraction using convolutional spatial attention.
The model applies convolution to capture local spatial features and generates an attention map that selectively emphasizes the most informative regions of the image.
I have integrated Vision Eagle Attention into a lightweight ResNet-18 architecture, demonstrating that this combination results in an efficient and powerful model.
- Score: 0.8158530638728501
- License:
- Abstract: In computer vision tasks, the ability to focus on relevant regions within an image is crucial for improving model performance, particularly when key features are small, subtle, or spatially dispersed. Convolutional neural networks (CNNs) typically treat all regions of an image equally, which can lead to inefficient feature extraction. To address this challenge, I have introduced Vision Eagle Attention, a novel attention mechanism that enhances visual feature extraction using convolutional spatial attention. The model applies convolution to capture local spatial features and generates an attention map that selectively emphasizes the most informative regions of the image. This attention mechanism enables the model to focus on discriminative features while suppressing irrelevant background information. I have integrated Vision Eagle Attention into a lightweight ResNet-18 architecture, demonstrating that this combination results in an efficient and powerful model. I have evaluated the performance of the proposed model on three widely used benchmark datasets: FashionMNIST, Intel Image Classification, and OracleMNIST, with a primary focus on image classification. Experimental results show that the proposed approach improves classification accuracy. Additionally, this method has the potential to be extended to other vision tasks, such as object detection, segmentation, and visual tracking, offering a computationally efficient solution for a wide range of vision-based applications. Code is available at: https://github.com/MahmudulHasan11085/Vision-Eagle-Attention.git
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Learning 1D Causal Visual Representation with De-focus Attention Networks [108.72931590504406]
This paper explores the feasibility of representing images using 1D causal modeling.
We propose De-focus Attention Networks, which employ learnable bandpass filters to create varied attention patterns.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Top-Down Visual Attention from Analysis by Synthesis [87.47527557366593]
We consider top-down attention from a classic Analysis-by-Synthesis (AbS) perspective of vision.
We propose Analysis-by-Synthesis Vision Transformer (AbSViT), which is a top-down modulated ViT model that variationally approximates AbS, and controllable achieves top-down attention.
arXiv Detail & Related papers (2023-03-23T05:17:05Z) - Visual Attention Network [90.0753726786985]
We propose a novel large kernel attention (LKA) module to enable self-adaptive and long-range correlations in self-attention.
We also introduce a novel neural network based on LKA, namely Visual Attention Network (VAN)
VAN outperforms the state-of-the-art vision transformers and convolutional neural networks with a large margin in extensive experiments.
arXiv Detail & Related papers (2022-02-20T06:35:18Z) - TDAN: Top-Down Attention Networks for Enhanced Feature Selectivity in
CNNs [18.24779045808196]
We propose a lightweight top-down (TD) attention module that iteratively generates a "visual searchlight" to perform top-down channel and spatial modulation of its inputs.
Our models are more robust to changes in input resolution during inference and learn to "shift attention" by localizing individual objects or features at each computation step without any explicit supervision.
arXiv Detail & Related papers (2021-11-26T12:35:17Z) - Where to Look: A Unified Attention Model for Visual Recognition with
Reinforcement Learning [5.247711598719703]
We propose to unify the top-down and bottom-up attention together for recurrent visual attention.
Our model exploits the image pyramids and Q-learning to select regions of interests in the top-down attention mechanism.
We train our model in an end-to-end reinforcement learning framework, and evaluate our method on visual classification tasks.
arXiv Detail & Related papers (2021-11-13T18:44:50Z) - Learning to ignore: rethinking attention in CNNs [87.01305532842878]
We propose to reformulate the attention mechanism in CNNs to learn to ignore instead of learning to attend.
Specifically, we propose to explicitly learn irrelevant information in the scene and suppress it in the produced representation.
arXiv Detail & Related papers (2021-11-10T13:47:37Z) - Attend and Guide (AG-Net): A Keypoints-driven Attention-based Deep
Network for Image Recognition [13.230646408771868]
We propose an end-to-end CNN model, which learns meaningful features linking fine-grained changes using our novel attention mechanism.
It captures the spatial structures in images by identifying semantic regions (SRs) and their spatial distributions, and is proved to be the key to modelling subtle changes in images.
The framework is evaluated on six diverse benchmark datasets.
arXiv Detail & Related papers (2021-10-23T09:43:36Z) - Recurrent Attention Models with Object-centric Capsule Representation
for Multi-object Recognition [4.143091738981101]
We show that an object-centric hidden representation in an encoder-decoder model with iterative glimpse attention yields effective integration of attention and recognition.
Our work takes a step toward a general architecture for how to integrate recurrent object-centric representation into the planning of attentional glimpses.
arXiv Detail & Related papers (2021-10-11T01:41:21Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - ULSAM: Ultra-Lightweight Subspace Attention Module for Compact
Convolutional Neural Networks [4.143032261649983]
"Ultra-Lightweight Subspace Attention Mechanism" (ULSAM) is end-to-end trainable and can be deployed as a plug-and-play module in compact convolutional neural networks (CNNs)
We achieve $approx$13% and $approx$25% reduction in both the FLOPs and parameter counts of MobileNet-V2 with a 0.27% and more than 1% improvement in top-1 accuracy on the ImageNet-1K and fine-grained image classification datasets (respectively)
arXiv Detail & Related papers (2020-06-26T17:05:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.