Optimized Unet with Attention Mechanism for Multi-Scale Semantic Segmentation
- URL: http://arxiv.org/abs/2502.03813v1
- Date: Thu, 06 Feb 2025 06:51:23 GMT
- Title: Optimized Unet with Attention Mechanism for Multi-Scale Semantic Segmentation
- Authors: Xuan Li, Quanchao Lu, Yankaiqi Li, Muqing Li, Yijiashun Qi,
- Abstract summary: This paper proposes an improved Unet model combined with an attention mechanism.
It introduces channel attention and spatial attention modules, enhances the model's ability to focus on important features.
The improved model performs well in terms of mIoU and pixel accuracy (PA), reaching 76.5% and 95.3% respectively.
- Score: 8.443350618722564
- License:
- Abstract: Semantic segmentation is one of the core tasks in the field of computer vision, and its goal is to accurately classify each pixel in an image. The traditional Unet model achieves efficient feature extraction and fusion through an encoder-decoder structure, but it still has certain limitations when dealing with complex backgrounds, long-distance dependencies, and multi-scale targets. To this end, this paper proposes an improved Unet model combined with an attention mechanism, introduces channel attention and spatial attention modules, enhances the model's ability to focus on important features, and optimizes skip connections through a multi-scale feature fusion strategy, thereby improving the combination of global semantic information and fine-grained features. The experiment is based on the Cityscapes dataset and compared with classic models such as FCN, SegNet, DeepLabv3+, and PSPNet. The improved model performs well in terms of mIoU and pixel accuracy (PA), reaching 76.5% and 95.3% respectively. The experimental results verify the superiority of this method in dealing with complex scenes and blurred target boundaries. In addition, this paper discusses the potential of the improved model in practical applications and future expansion directions, indicating that it has broad application value in fields such as autonomous driving, remote sensing image analysis, and medical image processing.
Related papers
- ContextFormer: Redefining Efficiency in Semantic Segmentation [46.06496660333768]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.
Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.
We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
This paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks.
MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization.
MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations.
arXiv Detail & Related papers (2025-01-18T11:57:20Z) - Threshold Attention Network for Semantic Segmentation of Remote Sensing Images [3.5449012582104795]
Self-attention mechanism (SA) is an effective approach for designing segmentation networks.
We propose a novel threshold attention mechanism (TAM) for semantic segmentation.
Based on TAM, we present a threshold attention network (TANet) for semantic segmentation.
arXiv Detail & Related papers (2025-01-14T10:09:55Z) - Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening [2.874893537471256]
Unfolding fusion methods integrate the powerful representation capabilities of deep learning with the robustness of model-based approaches.
In this paper, we propose a model-based deep unfolded method for satellite image fusion.
Experimental results on PRISMA, Quickbird, and WorldView2 datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2024-09-04T13:05:00Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - AMMUNet: Multi-Scale Attention Map Merging for Remote Sensing Image Segmentation [4.618389486337933]
We propose AMMUNet, a UNet-based framework that employs multi-scale attention map merging.
The proposed AMMM effectively combines multi-scale attention maps into a unified representation using a fixed mask template.
We show that our approach achieves remarkable mean intersection over union (mIoU) scores of 75.48% on the Vaihingen dataset and an exceptional 77.90% on the Potsdam dataset.
arXiv Detail & Related papers (2024-04-20T15:23:15Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Activating More Pixels in Image Super-Resolution Transformer [53.87533738125943]
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution.
We propose a novel Hybrid Attention Transformer (HAT) to activate more input pixels for better reconstruction.
Our overall method significantly outperforms the state-of-the-art methods by more than 1dB.
arXiv Detail & Related papers (2022-05-09T17:36:58Z) - Multi-Attention-Network for Semantic Segmentation of Fine Resolution
Remote Sensing Images [10.835342317692884]
The accuracy of semantic segmentation in remote sensing images has been increased significantly by deep convolutional neural networks.
This paper proposes a Multi-Attention-Network (MANet) to address these issues.
A novel attention mechanism of kernel attention with linear complexity is proposed to alleviate the large computational demand in attention.
arXiv Detail & Related papers (2020-09-03T09:08:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.