論文の概要: Labeled Datasets for Research on Information Operations
- arxiv url: http://arxiv.org/abs/2411.10609v1
- Date: Fri, 15 Nov 2024 22:15:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:10.820403
- Title: Labeled Datasets for Research on Information Operations
- Title(参考訳): 情報処理研究のためのラベル付きデータセット
- Authors: Ozgur Can Seckin, Manita Pote, Alexander Nwala, Lake Yin, Luca Luceri, Alessandro Flammini, Filippo Menczer,
- Abstract要約: ソーシャルメディアプラットフォームによって検証されたIOポストと、同様のトピックを同じ時間フレーム(制御データ)で議論した303kアカウントによる1300万以上の投稿の両方を含む、26のキャンペーンに関するラベル付きデータセットを新たに提示する。
データセットは、さまざまなキャンペーンや国で調整されたアカウントによって使用される物語、ネットワークインタラクション、エンゲージメント戦略の研究を促進する。
- 参考スコア(独自算出の注目度): 71.34999856621306
- License:
- Abstract: Social media platforms have become a hub for political activities and discussions, democratizing participation in these endeavors. However, they have also become an incubator for manipulation campaigns, like information operations (IOs). Some social media platforms have released datasets related to such IOs originating from different countries. However, we lack comprehensive control data that can enable the development of IO detection methods. To bridge this gap, we present new labeled datasets about 26 campaigns, which contain both IO posts verified by a social media platform and over 13M posts by 303k accounts that discussed similar topics in the same time frames (control data). The datasets will facilitate the study of narratives, network interactions, and engagement strategies employed by coordinated accounts across various campaigns and countries. By comparing these coordinated accounts against organic ones, researchers can develop and benchmark IO detection algorithms.
- Abstract(参考訳): ソーシャルメディアプラットフォームは政治活動や議論の中心となり、これらの取り組みへの参加を民主化している。
しかし、情報操作(IO)のような操作キャンペーンのインキュベーターにもなっている。
一部のソーシャルメディアプラットフォームは、異なる国から派生したそのようなIOに関連するデータセットをリリースした。
しかし、IO検出手法の開発を可能にする包括的な制御データが欠如している。
このギャップを埋めるために、ソーシャルメディアプラットフォームによって検証されたIOポストと、同様のトピックを同じ時間フレーム(制御データ)で議論した303kアカウントによる1300万以上の投稿を含む、26のキャンペーンに関するラベル付きデータセットを新たに提示する。
データセットは、さまざまなキャンペーンや国で調整されたアカウントによって使用される物語、ネットワークインタラクション、エンゲージメント戦略の研究を促進する。
これらの調整されたアカウントと有機アカウントを比較することで、IO検出アルゴリズムを開発し、ベンチマークすることができる。
関連論文リスト
- Unraveling the Web of Disinformation: Exploring the Larger Context of State-Sponsored Influence Campaigns on Twitter [16.64763746842362]
我々は、様々な国を起源とする19の国が支援する偽情報キャンペーンをTwitterで調査した。
私たちは機械学習ベースの分類器を構築し、目に見えないキャンペーンから最大94%のアカウントを正しく識別できる。
また、当社のシステムを野放しにして、州が支援するオペレーションに属する可能性のあるアカウントを増やしています。
論文 参考訳(メタデータ) (2024-07-25T15:03:33Z) - The Anatomy of Conspirators: Unveiling Traits using a Comprehensive
Twitter Dataset [0.0]
本稿では,2022年を通して共謀活動に従事しているアカウントを包含するTwitterデータセットを構築するための新しい手法を提案する。
この包括的な収集作業により、合計15万のアカウントと3700万のツイートがタイムラインから抽出された。
トピック,プロファイル,行動特性の3次元にわたる2つのグループの比較分析を行った。
論文 参考訳(メタデータ) (2023-08-29T09:35:23Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3Dセマンティックデータは、障害物検出やエゴ-車両の局所化といった中核的な認識タスクに有用である。
そこで我々は,大規模生産段階の運用領域に対応する多様なラベル空間を持つ新しいデータセットであるNavala 3D(Navya3DSeg)を提案する。
ラベルのない23のラベル付きシーケンスと25の補足シーケンスが含まれており、ポイントクラウド上の自己教師付きおよび半教師付きセマンティックセマンティックセグメンテーションベンチマークを探索するために設計された。
論文 参考訳(メタデータ) (2023-02-16T13:41:19Z) - Ranking-based Group Identification via Factorized Attention on Social
Tripartite Graph [68.08590487960475]
グループ識別のための文脈的要因認識(CFAG)という,GNNに基づく新しいフレームワークを提案する。
我々は3部グラフ畳み込み層を考案し、ユーザ、グループ、アイテム間の異なる種類の近隣からの情報を集約する。
データ疎度問題に対処するため,提案した因子化注意機構に基づく新しい伝搬増強層を考案した。
論文 参考訳(メタデータ) (2022-11-02T01:42:20Z) - JRDB-Act: A Large-scale Multi-modal Dataset for Spatio-temporal Action,
Social Group and Activity Detection [54.696819174421584]
大学構内環境における生活行動の実際の分布を反映したマルチモーダルデータセットであるJRDB-Actを紹介する。
JRDB-Actには280万以上のアクションラベルがある。
JRDB-Actは、現場での対話に基づいて個人をグループ化するタスクに着想を得た社会集団識別アノテーションが付属している。
論文 参考訳(メタデータ) (2021-06-16T14:43:46Z) - Streaming Social Event Detection and Evolution Discovery in
Heterogeneous Information Networks [90.3475746663728]
イベントは現実世界やリアルタイムで行われており、社会集会、祝祭、影響力のある会議、スポーツ活動などのイベントのために計画や組織化が可能である。
ソーシャルメディアプラットフォームは、トピックの異なる公開イベントに関する多くのリアルタイムテキスト情報を生成する。
しかし、異質なテクスチャやメタデータがあいまいであることが多いため、社会イベントの採掘は困難である。
論文 参考訳(メタデータ) (2021-04-02T02:13:10Z) - A General Method to Find Highly Coordinating Communities in Social Media
through Inferred Interaction Links [13.264683014487376]
政治的誤報、占い、組織化されたトロリングは、オンラインの悪意ある行動であり、現実世界に重大な影響を及ぼす。
本稿では,アカウントのインタラクションとメタデータのみに依存する新しい時間的ウィンドウ手法を提案する。
さまざまな行動に関わるアカウントのグループを検出し、それを協調して、異なる目標ベースの戦略を実行する。
論文 参考訳(メタデータ) (2021-03-05T00:48:23Z) - I-AID: Identifying Actionable Information from Disaster-related Tweets [0.0]
ソーシャルメディアは、被災者、寄付、支援要請に関する貴重なデータを提供することによって、災害管理において重要な役割を担っている。
ツイートを自動的にマルチラベル情報タイプに分類するマルチモデルアプローチであるI-AIDを提案する。
以上の結果から,I-AIDはTREC-ISデータセットおよびCOVID-19 Tweetsにおいて,平均F1得点の6%,+4%において最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-08-04T19:07:50Z) - Automatic Detection of Influential Actors in Disinformation Networks [0.0]
本稿では,偽情報物語やネットワーク,影響力あるアクターの検出を自動化するためのエンドツーエンドフレームワークを提案する。
システムは精度96%、リコール79%、PR曲線96%のIOアカウントを検出する。
結果は、米国議会の報告書、調査ジャーナリズム、Twitterが提供するIOデータセットからの、既知のIOアカウントの独立したソースと相関している。
論文 参考訳(メタデータ) (2020-05-21T20:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。