論文の概要: Language Model Evolutionary Algorithms for Recommender Systems: Benchmarks and Algorithm Comparisons
- arxiv url: http://arxiv.org/abs/2411.10697v1
- Date: Sat, 16 Nov 2024 04:35:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:35:01.147649
- Title: Language Model Evolutionary Algorithms for Recommender Systems: Benchmarks and Algorithm Comparisons
- Title(参考訳): リコメンダシステムのための言語モデル進化アルゴリズム:ベンチマークとアルゴリズムの比較
- Authors: Jiao Liu, Zhu Sun, Shanshan Feng, Yew-Soon Ong,
- Abstract要約: 大規模言語モデル(LLM)は進化的アルゴリズム(EA)の機能を大幅に強化した
我々は,LSMベースのEAの性能を評価するために,RSBenchというベンチマーク問題セットを導入し,プロンプト最適化を提案する。
確立されたEAフレームワークに基づく3つのLCMベースのEAを開発し、RSBenchを用いてその性能を実験的に評価する。
- 参考スコア(独自算出の注目度): 33.70598394905857
- License:
- Abstract: In the evolutionary computing community, the remarkable language-handling capabilities and reasoning power of large language models (LLMs) have significantly enhanced the functionality of evolutionary algorithms (EAs), enabling them to tackle optimization problems involving structured language or program code. Although this field is still in its early stages, its impressive potential has led to the development of various LLM-based EAs. To effectively evaluate the performance and practical applicability of these LLM-based EAs, benchmarks with real-world relevance are essential. In this paper, we focus on LLM-based recommender systems (RSs) and introduce a benchmark problem set, named RSBench, specifically designed to assess the performance of LLM-based EAs in recommendation prompt optimization. RSBench emphasizes session-based recommendations, aiming to discover a set of Pareto optimal prompts that guide the recommendation process, providing accurate, diverse, and fair recommendations. We develop three LLM-based EAs based on established EA frameworks and experimentally evaluate their performance using RSBench. Our study offers valuable insights into the application of EAs in LLM-based RSs. Additionally, we explore key components that may influence the overall performance of the RS, providing meaningful guidance for future research on the development of LLM-based EAs in RSs.
- Abstract(参考訳): 進化的コンピューティングコミュニティでは、大きな言語モデル(LLM)の顕著な言語処理能力と推論能力が進化的アルゴリズム(EA)の機能を大幅に強化し、構造化言語やプログラムコードに関わる最適化問題に対処することが可能になった。
この分野はまだ初期段階にあるが、その印象的なポテンシャルは様々なLLMベースのEAの開発に繋がった。
LLMベースのEAの性能と実用性を効果的に評価するためには、実世界の関連性のあるベンチマークが不可欠である。
本稿では, LLM ベースのレコメンデータシステム (RS) に焦点をあて, RSBench というベンチマーク問題を導入する。
RSBench氏はセッションベースのレコメンデーションを強調し、レコメンデーションプロセスをガイドし、正確で多様性があり、公正なレコメンデーションを提供するパレートの最適なプロンプトのセットを見つけることを目指している。
確立されたEAフレームワークに基づく3つのLCMベースのEAを開発し、RSBenchを用いてその性能を実験的に評価する。
我々の研究は、LLMベースのRSにおけるEAの応用に関する貴重な知見を提供する。
さらに、我々は、RSの全体的な性能に影響を与える可能性のある重要なコンポーネントを探求し、将来のRSにおけるLLMベースのEAの開発について、有意義なガイダンスを提供する。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - RLRF4Rec: Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking [33.54698201942643]
大規模言語モデル(LLM)は、様々な領域で顕著なパフォーマンスを示している。
本稿では,Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Re rankを組み込んだ新しいフレームワークであるRLRF4Recを紹介する。
論文 参考訳(メタデータ) (2024-10-08T11:42:37Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
逐次リコメンデータシステム(SRS)は,ユーザの過去のインタラクションシーケンスに基づいて,ユーザが好む次の項目を予測する。
様々なAIアプリケーションにおける大規模言語モデル(LLM)の台頭に触発されて、LLMベースのSRSの研究が急増している。
我々は,大きめの粒度適応の上に構築された逐次レコメンデーションモデルであるDARecを提案する。
論文 参考訳(メタデータ) (2024-08-14T10:03:40Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
大規模言語モデル(LLM)は、幅広い汎用タスクを解く際、印象的なゼロショット能力を示した。
LLMは時間的情報の認識と利用に不足しており、シーケンシャルなデータの理解を必要とするタスクではパフォーマンスが悪い。
LLMに基づくシーケンシャルレコメンデーションのために、歴史的相互作用の中で時間情報を利用する3つのプロンプト戦略を提案する。
論文 参考訳(メタデータ) (2024-05-05T00:21:26Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Benchmarking the Text-to-SQL Capability of Large Language Models: A
Comprehensive Evaluation [33.41556606816004]
大規模言語モデル(LLM)は、テキストからタスクへ進むための強力なツールとして登場した。
最適なプロンプトテンプレートと設計フレームワークについてはまだ合意が得られていない。
既存のベンチマークでは、テキスト・ツー・プロセスの様々なサブタスクにまたがるLCMのパフォーマンスが不十分である。
論文 参考訳(メタデータ) (2024-03-05T13:23:48Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews
using Domain-specific Finetuned Large Language Models [0.0]
本稿では,Large Language Models(LLMs)のパワーと,PRISMA(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)の厳密な報告ガイドラインを組み合わせたAI対応方法論フレームワークを提案する。
厳密なSLRプロセスの結果として選択されたドメイン固有の学術論文にLCMを微調整することにより、提案するPRISMA-DFLLMレポートガイドラインは、より効率、再利用性、拡張性を達成する可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-15T02:52:50Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。