論文の概要: Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2411.10701v1
- Date: Sat, 16 Nov 2024 04:54:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:19.060201
- Title: Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
- Title(参考訳): 拡散型層状意味再構成による教師なしアウト・オブ・ディストリビューション検出
- Authors: Ying Yang, De Cheng, Chaowei Fang, Yubiao Wang, Changzhe Jiao, Lechao Cheng, Nannan Wang,
- Abstract要約: 教師なしのアウト・オブ・ディストリビューション(OOD)検出は、未ラベルのIn-Distribution(ID)トレーニングサンプルからのみ学習することで、ドメイン外のデータを識別することを目的としている。
現在の再構成手法は, 画素/機能空間における入力と対応する生成物間の再構成誤差を測定することで, 優れた代替手法を提供する。
拡散に基づく階層的意味再構成手法を提案する。
- 参考スコア(独自算出の注目度): 30.02748131967826
- License:
- Abstract: Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face a key dilemma: improving the reconstruction power of the generative model while keeping a compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. By distorting the extracted features with Gaussian noise and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at <https://github.com/xbyym/DLSR>.
- Abstract(参考訳): 教師なしのアウト・オブ・ディストリビューション(OOD)検出は、安全な現実世界の機械学習システムを開発する上で不可欠な、ラベルなしのIn-Distribution(ID)トレーニングサンプルからのみ学習することで、ドメイン外のデータを識別することを目的としている。
現在の再構成手法は, 画素/機能空間における入力と対応する生成物間の再構成誤差を測定することで, 優れた代替手法を提供する。
しかし、このような生成方法は、IDデータのコンパクトな表現を維持しながら、生成モデルの再構築能力を向上させるという重要なジレンマに直面している。
そこで本研究では,非教師付きOOD検出のための拡散型階層型意味再構成手法を提案する。
提案手法の革新は,拡散モデルの本質的なデータ再構成能力を利用して,潜在特徴空間におけるOODサンプルとIDサンプルを識別することである。
さらに,包括的かつ識別的な特徴表現を構築するために,多層意味特徴抽出戦略を考案する。
抽出した特徴をガウス雑音で歪ませ、拡散モデルを特徴再構成に適用することにより、再構成誤差に応じてIDとOODの分離を行う。
種々のデータセット上に構築された複数のベンチマークの大規模な実験結果から,本手法が検出精度と速度の面で最先端の性能を達成することを示す。
コードは <https://github.com/xbyym/DLSR> で公開されている。
関連論文リスト
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAEは,ポイントマスク自動エンコーダのグローバルな特徴表現を強化する,自己教師型学習フレームワークである。
PseudoNeg-MAE は ModelNet40 と ScanObjectNN のデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-24T07:57:21Z) - Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
堅牢な機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
拡散モデルの生成能力とCLIPの強力な特徴抽出能力を活用する新しいOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-16T23:55:25Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - CMFDFormer: Transformer-based Copy-Move Forgery Detection with Continual
Learning [52.72888626663642]
コピーモーブ偽造検出は、疑わしい偽画像中の重複領域を検出することを目的としている。
深層学習に基づく複写偽造検出手法が最上位にある。
CMFDFormer という名称の Transformer-style copy-move forgery ネットワークを提案する。
また、CMFDFormerが新しいタスクを処理できるように、新しいPCSD連続学習フレームワークを提供する。
論文 参考訳(メタデータ) (2023-11-22T09:27:46Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Denoising diffusion models for out-of-distribution detection [2.113925122479677]
我々は,確率拡散モデル(DDPM)を自己エンコーダの復号化として活用する。
DDPMを用いてノイズレベルの範囲の入力を再構成し,結果の多次元再構成誤差を用いてアウト・オブ・ディストリビューション入力を分類する。
論文 参考訳(メタデータ) (2022-11-14T20:35:11Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-Distribution (OOD) 検出は、よく訓練された深層モデルから抽出された表現に基づいてOODデータを識別することを目的としている。
本稿では,透かしという一般的な手法を提案する。
我々は,元データの特徴に重畳される統一パターンを学習し,ウォーターマーキング後にモデルの検出能力が大きく向上する。
論文 参考訳(メタデータ) (2022-10-27T06:12:32Z) - READ: Aggregating Reconstruction Error into Out-of-distribution
Detection [5.069442437365223]
ディープニューラルネットワークは異常なデータに対する過信であることが知られている。
本稿では,READ(Reconstruction Error Aggregated Detector)を提案する。
本手法は,従来のOOD検出アルゴリズムと比較して,FPR@95TPRの平均値を最大9.8%削減する。
論文 参考訳(メタデータ) (2022-06-15T11:30:41Z) - Learning by Erasing: Conditional Entropy based Transferable Out-Of-Distribution Detection [17.31471594748061]
トレーニングとテストシナリオ間の分散シフトを処理するためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
既存の方法は、データセット固有の特徴表現やデータ分散をキャプチャするために、再トレーニングを必要とする。
我々は,新しいIDデータセットで再トレーニングする必要がない,DGMに基づく転送可能なOOD検出手法を提案する。
論文 参考訳(メタデータ) (2022-04-23T10:19:58Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。