FlexFL: Flexible and Effective Fault Localization with Open-Source Large Language Models
- URL: http://arxiv.org/abs/2411.10714v1
- Date: Sat, 16 Nov 2024 06:08:14 GMT
- Title: FlexFL: Flexible and Effective Fault Localization with Open-Source Large Language Models
- Authors: Chuyang Xu, Zhongxin Liu, Xiaoxue Ren, Gehao Zhang, Ming Liang, David Lo,
- Abstract summary: We propose a novel LLM-based FL framework named FlexFL, which can flexibly leverage different types of bug-related information.
We show that FlexFL with a lightweight open-source LLM Llama3-8B can locate 42 and 63 more bugs than two state-of-the-art LLM-based FL approaches AutoFL and AgentFL.
- Score: 11.86369546251309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the impressive code comprehension ability of Large Language Models (LLMs), a few studies have proposed to leverage LLMs to locate bugs, i.e., LLM-based FL, and demonstrated promising performance. However, first, these methods are limited in flexibility. They rely on bug-triggering test cases to perform FL and cannot make use of other available bug-related information, e.g., bug reports. Second, they are built upon proprietary LLMs, which are, although powerful, confronted with risks in data privacy. To address these limitations, we propose a novel LLM-based FL framework named FlexFL, which can flexibly leverage different types of bug-related information and effectively work with open-source LLMs. FlexFL is composed of two stages. In the first stage, FlexFL reduces the search space of buggy code using state-of-the-art FL techniques of different families and provides a candidate list of bug-related methods. In the second stage, FlexFL leverages LLMs to delve deeper to double-check the code snippets of methods suggested by the first stage and refine fault localization results. In each stage, FlexFL constructs agents based on open-source LLMs, which share the same pipeline that does not postulate any type of bug-related information and can interact with function calls without the out-of-the-box capability. Extensive experimental results on Defects4J demonstrate that FlexFL outperforms the baselines and can work with different open-source LLMs. Specifically, FlexFL with a lightweight open-source LLM Llama3-8B can locate 42 and 63 more bugs than two state-of-the-art LLM-based FL approaches AutoFL and AgentFL that both use GPT-3.5.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
Speculative decoding (SD) has emerged as a widely used paradigm to accelerate LLM inference without compromising quality.
We introduce SWIFT, an on-the-fly self-speculative decoding algorithm that adaptively selects intermediate layers of LLMs to skip during inference.
Our experiments demonstrate that SWIFT can achieve over a 1.3x-1.6x speedup while preserving the original distribution of the generated text.
arXiv Detail & Related papers (2024-10-09T14:15:30Z) - Enhancing Fault Localization Through Ordered Code Analysis with LLM Agents and Self-Reflection [8.22737389683156]
Large Language Models (LLMs) offer promising improvements in fault localization by enhancing code comprehension and reasoning.
We introduce LLM4FL, a novel LLM-agent-based fault localization approach that integrates SBFL rankings with a divide-and-conquer strategy.
Our results demonstrate that LLM4FL outperforms AutoFL by 19.27% in Top-1 accuracy and surpasses state-of-the-art supervised techniques such as DeepFL and Grace.
arXiv Detail & Related papers (2024-09-20T16:47:34Z) - Leveraging Open-Source Large Language Models for Native Language Identification [1.6267479602370543]
Native Language Identification (NLI) has applications in forensics, marketing, and second language acquisition.
This study explores the potential of using open-source generative large language models (LLMs) for NLI.
arXiv Detail & Related papers (2024-09-15T08:14:18Z) - Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement [72.97553348776425]
We make a pioneering effort to broaden the applicability of merging techniques from FT to PT LLMs.
We introduce an approach based on WeIght DisENtanglement (WIDEN) to effectively extend the merging scope.
We merge Qwen1.5-Chat (an FT LLM with instruction-following skills) with Sailor (a PT LLM with multilingual abilities) across 7B and 14B model scales.
arXiv Detail & Related papers (2024-08-06T10:46:46Z) - FOFO: A Benchmark to Evaluate LLMs' Format-Following Capability [70.84333325049123]
FoFo is a pioneering benchmark for evaluating large language models' (LLMs) ability to follow complex, domain-specific formats.
This paper presents FoFo, a pioneering benchmark for evaluating large language models' (LLMs) ability to follow complex, domain-specific formats.
arXiv Detail & Related papers (2024-02-28T19:23:27Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - A Quantitative and Qualitative Evaluation of LLM-Based Explainable Fault Localization [12.80414941523501]
AutoFL generates an explanation of the bug along with a suggested fault location.
Experiments on 798 real-world bugs in Java and Python reveal AutoFL improves method-level acc@1 by up to 233.3% over baselines.
arXiv Detail & Related papers (2023-08-10T10:26:55Z) - Integration of Large Language Models and Federated Learning [58.9876604258949]
We propose a research framework, dividing the fusion of LLMs and FL into three parts.
We first provide a review of the current state of research in the domain of LLMs combined with FL, including their typical applications.
We then discuss the practical applications of the combination of LLMs and FL in critical scenarios such as healthcare, finance, and education.
arXiv Detail & Related papers (2023-07-18T02:09:14Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.