On-device Anomaly Detection in Conveyor Belt Operations
- URL: http://arxiv.org/abs/2411.10729v2
- Date: Thu, 08 May 2025 16:29:53 GMT
- Title: On-device Anomaly Detection in Conveyor Belt Operations
- Authors: Luciano S. Martinez-Rau, Yuxuan Zhang, Bengt Oelmann, Sebastian Bader,
- Abstract summary: This study proposes two novel methods for classifying normal and abnormal duty cycles.<n>The proposed approaches are pattern recognition systems that make use of threshold-based duty-cycle detection mechanisms.<n>The methods demonstrate efficient, real-time operation with energy consumption of 13.3 and 20.6 $mu$J during inference.
- Score: 6.402381955787955
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Conveyor belts are crucial in mining operations by enabling the continuous and efficient movement of bulk materials over long distances, which directly impacts productivity. While detecting anomalies in specific conveyor belt components has been widely studied, identifying the root causes of these failures, such as changing production conditions and operator errors, remains critical. Continuous monitoring of mining conveyor belt work cycles is still at an early stage and requires robust solutions. Recently, an anomaly detection method for duty cycle operations of a mining conveyor belt has been proposed. Based on its limited performance and unevaluated long-term proper operation, this study proposes two novel methods for classifying normal and abnormal duty cycles. The proposed approaches are pattern recognition systems that make use of threshold-based duty-cycle detection mechanisms, manually extracted features, pattern-matching, and supervised tiny machine learning models. The explored low-computational models include decision tree, random forest, extra trees, extreme gradient boosting, Gaussian naive Bayes, and multi-layer perceptron. A comprehensive evaluation of the former and proposed approaches is carried out on two datasets. Both proposed methods outperform the former method, with the best-performing approach being dataset-dependent. The heuristic rule-based approach achieves the highest performance in the same dataset used for algorithm training, with 97.3% for normal cycles and 80.2% for abnormal cycles. The ML-based approach performs better on a dataset including the effects of machine aging, scoring 91.3% for normal cycles and 67.9% for abnormal cycles. Implemented on two low-power microcontrollers, the methods demonstrate efficient, real-time operation with energy consumption of 13.3 and 20.6 ${\mu}$J during inference. These results offer valuable insights for detecting ...
Related papers
- Enhanced semi-supervised stamping process monitoring with physically-informed feature extraction [4.357691364971652]
This study introduces a novel semi-supervised in-process anomaly monitoring framework, utilizing accelerometer signals and physics information, to capture the process anomaly effectively.<n>The proposed framework facilitates the construction of a monitoring model with imbalanced sample distribution, which enables in-process condition monitoring in real-time to prevent batch anomalies.
arXiv Detail & Related papers (2025-04-30T07:42:19Z) - Angel or Devil: Discriminating Hard Samples and Anomaly Contaminations for Unsupervised Time Series Anomaly Detection [4.767887707515356]
Training in unsupervised time series anomaly detection is constantly plagued by the discrimination between harmful anomaly contaminations' and beneficial hard normal samples'
arXiv Detail & Related papers (2024-10-26T13:59:23Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
The presence of noisy labels in a training dataset can significantly impact the performance of machine learning models.
We introduce a novel algorithm called TURN, which robustly and efficiently transfers the prior knowledge of pre-trained models.
arXiv Detail & Related papers (2023-10-24T20:28:59Z) - Non-contact Sensing for Anomaly Detection in Wind Turbine Blades: A
focus-SVDD with Complex-Valued Auto-Encoder Approach [2.967390112155113]
We enhance the quality assurance of manufacturing utilizing FMCW radar as a non-destructive sensing modality.
We propose a novel anomaly detection methodology called focus Support Vector Data Description (focus-SVDD)
The effectiveness of the proposed method is demonstrated through its application to collected data.
arXiv Detail & Related papers (2023-06-19T09:54:34Z) - Novel features for the detection of bearing faults in railway vehicles [88.89591720652352]
We introduce Mel-Frequency Cepstral Coefficients (MFCCs) and features extracted from the Amplitude Modulation Spectrogram (AMS) as features for the detection of bearing faults.
arXiv Detail & Related papers (2023-04-14T10:09:50Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data
Challenge [110.7678032481059]
We present the results of the first Machine Learning Gravitational-Wave Search Mock Data Challenge (MLGWSC-1).
For this challenge, participating groups had to identify gravitational-wave signals from binary black hole mergers of increasing complexity and duration embedded in progressively more realistic noise.
Our results show that current machine learning search algorithms may already be sensitive enough in limited parameter regions to be useful for some production settings.
arXiv Detail & Related papers (2022-09-22T16:44:59Z) - Automated Mobility Context Detection with Inertial Signals [7.71058263701836]
The primary goal of this paper is the investigation of context detection for remote monitoring of daily motor functions.
We aim to understand whether inertial signals sampled with wearable accelerometers, provide reliable information to classify gait-related activities as either indoor or outdoor.
arXiv Detail & Related papers (2022-05-16T09:34:43Z) - ERNIE-SPARSE: Learning Hierarchical Efficient Transformer Through
Regularized Self-Attention [48.697458429460184]
Two factors, information bottleneck sensitivity and inconsistency between different attention topologies, could affect the performance of the Sparse Transformer.
This paper proposes a well-designed model named ERNIE-Sparse.
It consists of two distinctive parts: (i) Hierarchical Sparse Transformer (HST) to sequentially unify local and global information, and (ii) Self-Attention Regularization (SAR) to minimize the distance for transformers with different attention topologies.
arXiv Detail & Related papers (2022-03-23T08:47:01Z) - Identifying Suitable Tasks for Inductive Transfer Through the Analysis
of Feature Attributions [78.55044112903148]
We use explainability techniques to predict whether task pairs will be complementary, through comparison of neural network activation between single-task models.
Our results show that, through this approach, it is possible to reduce training time by up to 83.5% at a cost of only 0.034 reduction in positive-class F1 on the TREC-IS 2020-A dataset.
arXiv Detail & Related papers (2022-02-02T15:51:07Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
It is impossible to collect enough data to learn all types of faults from a machine.
New algorithms, trained using data from healthy conditions only, were developed to perform unsupervised anomaly detection.
A key issue in the development of these algorithms is the noise in the signals, as it impacts the anomaly detection performance.
arXiv Detail & Related papers (2021-07-20T14:06:50Z) - Learning Noise Transition Matrix from Only Noisy Labels via Total
Variation Regularization [88.91872713134342]
We propose a theoretically grounded method that can estimate the noise transition matrix and learn a classifier simultaneously.
We show the effectiveness of the proposed method through experiments on benchmark and real-world datasets.
arXiv Detail & Related papers (2021-02-04T05:09:18Z) - Autoencoder-based Condition Monitoring and Anomaly Detection Method for
Rotating Machines [0.19116784879310028]
We propose an autoencoder model-based method for condition monitoring of rotating machines by using an anomaly detection approach.
The proposed method can directly extract the salient features from raw vibration signals.
Experimental results on two real-world datasets indicate that our proposed solution gives promising results.
arXiv Detail & Related papers (2021-01-27T16:49:49Z) - CLAWS: Clustering Assisted Weakly Supervised Learning with Normalcy
Suppression for Anomalous Event Detection [20.368114998124295]
We propose a weakly supervised anomaly detection method which has manifold contributions.
The proposed method obtains83.03% and 89.67% frame-level AUC performance on the UCF Crime and ShanghaiTech datasets respectively.
arXiv Detail & Related papers (2020-11-24T13:27:40Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.